File size: 6,573 Bytes
d0f4aff
5968a97
2db3bb3
d0f4aff
5968a97
719a76f
cb98777
719a76f
ae0ca85
f69cdc0
 
80f8fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f69cdc0
dbf90db
 
 
 
 
 
719a76f
6183592
719a76f
6df6769
 
 
 
dbf90db
6183592
 
 
 
 
 
719a76f
80f8fa5
 
 
f69cdc0
dbf90db
 
 
 
f69cdc0
68ccec0
 
dbf90db
719a76f
dbf90db
 
719a76f
dbf90db
 
 
719a76f
80f8fa5
 
 
 
dbf90db
 
719a76f
80f8fa5
 
 
dbf90db
 
719a76f
4b15ccd
f69cdc0
2db3bb3
b6b7c74
 
 
 
 
 
 
 
 
0ebe852
b6b7c74
 
 
 
2db3bb3
b6b7c74
 
65d5ebe
b6b7c74
 
5968a97
2db3bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
5968a97
2db3bb3
5968a97
 
4b15ccd
5968a97
 
 
2db3bb3
5968a97
2db3bb3
b6b7c74
5e84c69
 
dbf90db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee1641
0115682
 
 
d0f4aff
2db3bb3
 
 
4b15ccd
2db3bb3
5e84c69
 
2db3bb3
b6b7c74
 
2db3bb3
0115682
2db3bb3
0115682
 
 
2db3bb3
4b15ccd
0ebe852
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import torch
import time
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import threading

from transformers import TextIteratorStreamer
import threading

from transformers import TextIteratorStreamer
import queue

class RichTextStreamer(TextIteratorStreamer):
    def __init__(self, tokenizer, **kwargs):
        super().__init__(tokenizer, **kwargs)
        self.token_queue = queue.Queue()
    
    def put(self, value):
        # Instead of just decoding here, we emit full info per token
        token_id = value.item() if hasattr(value, "item") else value
        token_str = self.tokenizer.decode([token_id], **self.decode_kwargs)
        is_special = token_id in self.tokenizer.all_special_ids
        self.token_queue.put({
            "token_id": token_id,
            "token": token_str,
            "is_special": is_special
        })

    def __iter__(self):
        while True:
            try:
                token_info = self.token_queue.get(timeout=self.timeout)
                yield token_info
            except queue.Empty:
                if self.end_of_generation.is_set():
                    break


@spaces.GPU
def chat_with_model(messages):
    global current_model, current_tokenizer
    if current_model is None or current_tokenizer is None:
        yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
        return

    

    pad_id = current_tokenizer.pad_token_id
    if pad_id is None:
        pad_id = current_tokenizer.unk_token_id or 0

    prompt = format_prompt(messages)
    device = torch.device("cuda")
    current_model.to(device).half()

    inputs = current_tokenizer(prompt, return_tensors="pt")
    inputs = {k: v.to(device) for k, v in inputs.items()}


    # streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=False)
    streamer = RichTextStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=False)


    generation_kwargs = dict(
        **inputs,
        max_new_tokens=256,
        do_sample=True,
        streamer=streamer,
        eos_token_id=current_tokenizer.eos_token_id,
        pad_token_id=pad_id
    )

    thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs)
    thread.start()

    output_text = ""
    messages = messages.copy()
    messages.append({"role": "assistant", "content": ""})

    for token_info in streamer:
        token_str = token_info["token"]
        is_special = token_info["is_special"]
        output_text += token_str
        messages[-1]["content"] = output_text
        yield messages

        if is_special and token_info["token_id"] == current_tokenizer.eos_token_id:
            break

    current_model.to("cpu")
    torch.cuda.empty_cache()



# Globals
current_model = None
current_tokenizer = None

def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
    global current_model, current_tokenizer
    token = os.getenv("HF_TOKEN")

    progress(0, desc="Loading tokenizer...")
    current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)

    progress(0.5, desc="Loading model...")
    current_model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        device_map="cpu",  # loaded to CPU initially
        use_auth_token=token
    )

    progress(1, desc="Model ready.")
    return f"{model_name} loaded and ready!"

# Format conversation as plain text
def format_prompt(messages):
    prompt = ""
    for msg in messages:
        role = msg["role"]
        if role == "user":
            prompt += f"User: {msg['content'].strip()}\n"
        elif role == "assistant":
            prompt += f"Assistant: {msg['content'].strip()}\n"
    prompt += "Assistant:"
    return prompt

def add_user_message(user_input, history):
    return "", history + [{"role": "user", "content": user_input}]

# Available models
model_choices = [
    "meta-llama/Llama-3.2-3B-Instruct",
    "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
    "google/gemma-7b"
]

# UI
with gr.Blocks() as demo:
    gr.Markdown("## Clinical Chatbot (Streaming) — LLaMA, DeepSeek, Gemma")

    default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")

    # @spaces.GPU
    # def chat_with_model(messages):
    #     global current_model, current_tokenizer
    #     if current_model is None or current_tokenizer is None:
    #         yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
    #         return

    #     current_model = current_model.to("cuda").half()

    #     prompt = format_prompt(messages)
    #     inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)

    #     output_ids = []
    #     messages = messages.copy()
    #     messages.append({"role": "assistant", "content": ""})

    #     for token_id in current_model.generate(
    #         **inputs,
    #         max_new_tokens=256,
    #         do_sample=True,
    #         return_dict_in_generate=True,
    #         output_scores=False
    #     ).sequences[0][inputs['input_ids'].shape[-1]:]:  # skip input tokens
    #         output_ids.append(token_id.item())
    #         decoded = current_tokenizer.decode(output_ids, skip_special_tokens=False)
    #         if output_ids[-1] == current_tokenizer.eos_token_id:
    #             current_model.to("cpu")
    #             torch.cuda.empty_cache()
    #             return
    #         messages[-1]["content"] = decoded
    #         yield messages

    #     current_model.to("cpu")
    #     torch.cuda.empty_cache()
    #     return

    with gr.Row():
        model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
        model_status = gr.Textbox(label="Model Status", interactive=False)

    chatbot = gr.Chatbot(label="Chat", type="messages")
    msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
    clear = gr.Button("Clear")

    # Load default model on startup
    demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)

    # Load selected model manually
    model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)

    # Submit message + stream model response
    msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
        chat_with_model, chatbot, chatbot
    )

    # Clear chat
    clear.click(lambda: [], None, chatbot, queue=False)

demo.launch()