File size: 6,573 Bytes
d0f4aff 5968a97 2db3bb3 d0f4aff 5968a97 719a76f cb98777 719a76f ae0ca85 f69cdc0 80f8fa5 f69cdc0 dbf90db 719a76f 6183592 719a76f 6df6769 dbf90db 6183592 719a76f 80f8fa5 f69cdc0 dbf90db f69cdc0 68ccec0 dbf90db 719a76f dbf90db 719a76f dbf90db 719a76f 80f8fa5 dbf90db 719a76f 80f8fa5 dbf90db 719a76f 4b15ccd f69cdc0 2db3bb3 b6b7c74 0ebe852 b6b7c74 2db3bb3 b6b7c74 65d5ebe b6b7c74 5968a97 2db3bb3 5968a97 2db3bb3 5968a97 4b15ccd 5968a97 2db3bb3 5968a97 2db3bb3 b6b7c74 5e84c69 dbf90db 7ee1641 0115682 d0f4aff 2db3bb3 4b15ccd 2db3bb3 5e84c69 2db3bb3 b6b7c74 2db3bb3 0115682 2db3bb3 0115682 2db3bb3 4b15ccd 0ebe852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os
import torch
import time
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import threading
from transformers import TextIteratorStreamer
import threading
from transformers import TextIteratorStreamer
import queue
class RichTextStreamer(TextIteratorStreamer):
def __init__(self, tokenizer, **kwargs):
super().__init__(tokenizer, **kwargs)
self.token_queue = queue.Queue()
def put(self, value):
# Instead of just decoding here, we emit full info per token
token_id = value.item() if hasattr(value, "item") else value
token_str = self.tokenizer.decode([token_id], **self.decode_kwargs)
is_special = token_id in self.tokenizer.all_special_ids
self.token_queue.put({
"token_id": token_id,
"token": token_str,
"is_special": is_special
})
def __iter__(self):
while True:
try:
token_info = self.token_queue.get(timeout=self.timeout)
yield token_info
except queue.Empty:
if self.end_of_generation.is_set():
break
@spaces.GPU
def chat_with_model(messages):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
return
pad_id = current_tokenizer.pad_token_id
if pad_id is None:
pad_id = current_tokenizer.unk_token_id or 0
prompt = format_prompt(messages)
device = torch.device("cuda")
current_model.to(device).half()
inputs = current_tokenizer(prompt, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=False)
streamer = RichTextStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=False)
generation_kwargs = dict(
**inputs,
max_new_tokens=256,
do_sample=True,
streamer=streamer,
eos_token_id=current_tokenizer.eos_token_id,
pad_token_id=pad_id
)
thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs)
thread.start()
output_text = ""
messages = messages.copy()
messages.append({"role": "assistant", "content": ""})
for token_info in streamer:
token_str = token_info["token"]
is_special = token_info["is_special"]
output_text += token_str
messages[-1]["content"] = output_text
yield messages
if is_special and token_info["token_id"] == current_tokenizer.eos_token_id:
break
current_model.to("cpu")
torch.cuda.empty_cache()
# Globals
current_model = None
current_tokenizer = None
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
global current_model, current_tokenizer
token = os.getenv("HF_TOKEN")
progress(0, desc="Loading tokenizer...")
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
progress(0.5, desc="Loading model...")
current_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu", # loaded to CPU initially
use_auth_token=token
)
progress(1, desc="Model ready.")
return f"{model_name} loaded and ready!"
# Format conversation as plain text
def format_prompt(messages):
prompt = ""
for msg in messages:
role = msg["role"]
if role == "user":
prompt += f"User: {msg['content'].strip()}\n"
elif role == "assistant":
prompt += f"Assistant: {msg['content'].strip()}\n"
prompt += "Assistant:"
return prompt
def add_user_message(user_input, history):
return "", history + [{"role": "user", "content": user_input}]
# Available models
model_choices = [
"meta-llama/Llama-3.2-3B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"google/gemma-7b"
]
# UI
with gr.Blocks() as demo:
gr.Markdown("## Clinical Chatbot (Streaming) — LLaMA, DeepSeek, Gemma")
default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")
# @spaces.GPU
# def chat_with_model(messages):
# global current_model, current_tokenizer
# if current_model is None or current_tokenizer is None:
# yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
# return
# current_model = current_model.to("cuda").half()
# prompt = format_prompt(messages)
# inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
# output_ids = []
# messages = messages.copy()
# messages.append({"role": "assistant", "content": ""})
# for token_id in current_model.generate(
# **inputs,
# max_new_tokens=256,
# do_sample=True,
# return_dict_in_generate=True,
# output_scores=False
# ).sequences[0][inputs['input_ids'].shape[-1]:]: # skip input tokens
# output_ids.append(token_id.item())
# decoded = current_tokenizer.decode(output_ids, skip_special_tokens=False)
# if output_ids[-1] == current_tokenizer.eos_token_id:
# current_model.to("cpu")
# torch.cuda.empty_cache()
# return
# messages[-1]["content"] = decoded
# yield messages
# current_model.to("cpu")
# torch.cuda.empty_cache()
# return
with gr.Row():
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
model_status = gr.Textbox(label="Model Status", interactive=False)
chatbot = gr.Chatbot(label="Chat", type="messages")
msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
clear = gr.Button("Clear")
# Load default model on startup
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
# Load selected model manually
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
# Submit message + stream model response
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
chat_with_model, chatbot, chatbot
)
# Clear chat
clear.click(lambda: [], None, chatbot, queue=False)
demo.launch()
|