Change chatbot
Browse files
app.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
import os
|
2 |
import torch
|
|
|
3 |
import gradio as gr
|
4 |
import spaces
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
|
7 |
-
#
|
8 |
current_model = None
|
9 |
current_tokenizer = None
|
10 |
|
11 |
-
# Load model when selected
|
12 |
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
13 |
global current_model, current_tokenizer
|
14 |
token = os.getenv("HF_TOKEN")
|
@@ -20,34 +20,40 @@ def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
|
20 |
current_model = AutoModelForCausalLM.from_pretrained(
|
21 |
model_name,
|
22 |
torch_dtype=torch.float16,
|
23 |
-
device_map="cpu",
|
24 |
use_auth_token=token
|
25 |
)
|
26 |
|
27 |
progress(1, desc="Model ready.")
|
28 |
return f"{model_name} loaded and ready!"
|
29 |
|
30 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
@spaces.GPU
|
32 |
-
def chat_with_model(
|
33 |
global current_model, current_tokenizer
|
34 |
if current_model is None or current_tokenizer is None:
|
35 |
-
yield
|
|
|
36 |
|
37 |
current_model.to("cuda")
|
38 |
|
39 |
-
|
40 |
-
prompt = ""
|
41 |
-
for user_msg, bot_msg in history:
|
42 |
-
prompt += f"[INST] {user_msg.strip()} [/INST] {bot_msg.strip()} "
|
43 |
-
prompt += f"[INST] {history[-1][0]} [/INST]"
|
44 |
-
|
45 |
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
|
46 |
-
output_ids = []
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
for token_id in current_model.generate(
|
53 |
**inputs,
|
@@ -55,26 +61,25 @@ def chat_with_model(history):
|
|
55 |
do_sample=False,
|
56 |
return_dict_in_generate=True,
|
57 |
output_scores=False
|
58 |
-
).sequences[0]:
|
59 |
output_ids.append(token_id.item())
|
60 |
decoded = current_tokenizer.decode(output_ids, skip_special_tokens=True)
|
61 |
-
|
62 |
-
yield
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
return "", history + [(message, "")]
|
67 |
|
68 |
-
#
|
69 |
model_choices = [
|
70 |
"meta-llama/Llama-3.2-3B-Instruct",
|
71 |
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
72 |
"google/gemma-7b"
|
73 |
]
|
74 |
|
75 |
-
#
|
76 |
with gr.Blocks() as demo:
|
77 |
-
gr.Markdown("## Clinical Chatbot — LLaMA, DeepSeek, Gemma")
|
78 |
|
79 |
default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")
|
80 |
|
@@ -82,22 +87,22 @@ with gr.Blocks() as demo:
|
|
82 |
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
|
83 |
model_status = gr.Textbox(label="Model Status", interactive=False)
|
84 |
|
85 |
-
chatbot = gr.Chatbot(label="Chat")
|
86 |
-
msg = gr.Textbox(label="Your
|
87 |
-
|
88 |
|
89 |
-
# Load model on
|
90 |
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
|
91 |
|
92 |
-
# Load model
|
93 |
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
|
94 |
|
95 |
-
#
|
96 |
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
|
97 |
-
|
98 |
)
|
99 |
|
100 |
# Clear chat
|
101 |
-
|
102 |
|
103 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
import time
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
|
8 |
+
# Globals
|
9 |
current_model = None
|
10 |
current_tokenizer = None
|
11 |
|
|
|
12 |
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
13 |
global current_model, current_tokenizer
|
14 |
token = os.getenv("HF_TOKEN")
|
|
|
20 |
current_model = AutoModelForCausalLM.from_pretrained(
|
21 |
model_name,
|
22 |
torch_dtype=torch.float16,
|
23 |
+
device_map="cpu", # loaded to CPU initially
|
24 |
use_auth_token=token
|
25 |
)
|
26 |
|
27 |
progress(1, desc="Model ready.")
|
28 |
return f"{model_name} loaded and ready!"
|
29 |
|
30 |
+
# Format conversation as plain text
|
31 |
+
def format_prompt(messages):
|
32 |
+
prompt = ""
|
33 |
+
for msg in messages:
|
34 |
+
role = msg["role"]
|
35 |
+
if role == "user":
|
36 |
+
prompt += f"User: {msg['content'].strip()}\n"
|
37 |
+
elif role == "assistant":
|
38 |
+
prompt += f"Assistant: {msg['content'].strip()}\n"
|
39 |
+
prompt += "Assistant:"
|
40 |
+
return prompt
|
41 |
+
|
42 |
@spaces.GPU
|
43 |
+
def chat_with_model(messages):
|
44 |
global current_model, current_tokenizer
|
45 |
if current_model is None or current_tokenizer is None:
|
46 |
+
yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
|
47 |
+
return
|
48 |
|
49 |
current_model.to("cuda")
|
50 |
|
51 |
+
prompt = format_prompt(messages)
|
|
|
|
|
|
|
|
|
|
|
52 |
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
|
|
|
53 |
|
54 |
+
output_ids = []
|
55 |
+
messages = messages.copy()
|
56 |
+
messages.append({"role": "assistant", "content": ""})
|
57 |
|
58 |
for token_id in current_model.generate(
|
59 |
**inputs,
|
|
|
61 |
do_sample=False,
|
62 |
return_dict_in_generate=True,
|
63 |
output_scores=False
|
64 |
+
).sequences[0][inputs['input_ids'].shape[-1]:]: # skip input tokens
|
65 |
output_ids.append(token_id.item())
|
66 |
decoded = current_tokenizer.decode(output_ids, skip_special_tokens=True)
|
67 |
+
messages[-1]["content"] = decoded
|
68 |
+
yield messages
|
69 |
|
70 |
+
def add_user_message(user_input, history):
|
71 |
+
return "", history + [{"role": "user", "content": user_input}]
|
|
|
72 |
|
73 |
+
# Available models
|
74 |
model_choices = [
|
75 |
"meta-llama/Llama-3.2-3B-Instruct",
|
76 |
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
77 |
"google/gemma-7b"
|
78 |
]
|
79 |
|
80 |
+
# UI
|
81 |
with gr.Blocks() as demo:
|
82 |
+
gr.Markdown("## Clinical Chatbot (Streaming) — LLaMA, DeepSeek, Gemma")
|
83 |
|
84 |
default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")
|
85 |
|
|
|
87 |
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
|
88 |
model_status = gr.Textbox(label="Model Status", interactive=False)
|
89 |
|
90 |
+
chatbot = gr.Chatbot(label="Chat", type="messages")
|
91 |
+
msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
|
92 |
+
clear = gr.Button("Clear")
|
93 |
|
94 |
+
# Load default model on startup
|
95 |
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
|
96 |
|
97 |
+
# Load selected model manually
|
98 |
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
|
99 |
|
100 |
+
# Submit message + stream model response
|
101 |
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
|
102 |
+
chat_with_model, chatbot, chatbot
|
103 |
)
|
104 |
|
105 |
# Clear chat
|
106 |
+
clear.click(lambda: [], None, chatbot, queue=False)
|
107 |
|
108 |
demo.launch()
|