Make it into a chatbot
Browse files
app.py
CHANGED
@@ -4,11 +4,11 @@ import gradio as gr
|
|
4 |
import spaces
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
|
7 |
-
|
8 |
-
# Use a global variable to hold the current model and tokenizer
|
9 |
current_model = None
|
10 |
current_tokenizer = None
|
11 |
|
|
|
12 |
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
13 |
global current_model, current_tokenizer
|
14 |
token = os.getenv("HF_TOKEN")
|
@@ -27,17 +27,27 @@ def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
|
27 |
progress(1, desc="Model ready.")
|
28 |
return f"{model_name} loaded and ready!"
|
29 |
|
|
|
30 |
@spaces.GPU
|
31 |
-
def
|
32 |
global current_model, current_tokenizer
|
33 |
if current_model is None or current_tokenizer is None:
|
34 |
-
yield "⚠️ No model loaded
|
35 |
|
36 |
current_model.to("cuda")
|
37 |
-
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
output_ids = []
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
for token_id in current_model.generate(
|
43 |
**inputs,
|
@@ -45,14 +55,17 @@ def generate_text(prompt):
|
|
45 |
do_sample=False,
|
46 |
return_dict_in_generate=True,
|
47 |
output_scores=False
|
48 |
-
|
49 |
-
|
50 |
output_ids.append(token_id.item())
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
|
|
54 |
|
55 |
-
# Model
|
56 |
model_choices = [
|
57 |
"meta-llama/Llama-3.2-3B-Instruct",
|
58 |
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
@@ -61,26 +74,30 @@ model_choices = [
|
|
61 |
|
62 |
# Gradio UI
|
63 |
with gr.Blocks() as demo:
|
64 |
-
gr.Markdown("## Clinical
|
65 |
|
66 |
-
# State to track initial model to load
|
67 |
default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")
|
68 |
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
#
|
77 |
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
|
78 |
|
79 |
-
#
|
80 |
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
85 |
|
86 |
demo.launch()
|
|
|
4 |
import spaces
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
|
7 |
+
# Global model/tokenizer
|
|
|
8 |
current_model = None
|
9 |
current_tokenizer = None
|
10 |
|
11 |
+
# Load model when selected
|
12 |
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
13 |
global current_model, current_tokenizer
|
14 |
token = os.getenv("HF_TOKEN")
|
|
|
27 |
progress(1, desc="Model ready.")
|
28 |
return f"{model_name} loaded and ready!"
|
29 |
|
30 |
+
# Inference - yields response token-by-token
|
31 |
@spaces.GPU
|
32 |
+
def chat_with_model(history):
|
33 |
global current_model, current_tokenizer
|
34 |
if current_model is None or current_tokenizer is None:
|
35 |
+
yield history + [("⚠️ No model loaded.", "")]
|
36 |
|
37 |
current_model.to("cuda")
|
|
|
38 |
|
39 |
+
# Combine conversation history into prompt
|
40 |
+
prompt = ""
|
41 |
+
for user_msg, bot_msg in history:
|
42 |
+
prompt += f"[INST] {user_msg.strip()} [/INST] {bot_msg.strip()} "
|
43 |
+
prompt += f"[INST] {history[-1][0]} [/INST]"
|
44 |
+
|
45 |
+
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
|
46 |
output_ids = []
|
47 |
+
|
48 |
+
# Clone history to avoid mutating during yield
|
49 |
+
updated_history = history.copy()
|
50 |
+
updated_history[-1] = (history[-1][0], "")
|
51 |
|
52 |
for token_id in current_model.generate(
|
53 |
**inputs,
|
|
|
55 |
do_sample=False,
|
56 |
return_dict_in_generate=True,
|
57 |
output_scores=False
|
58 |
+
).sequences[0]:
|
|
|
59 |
output_ids.append(token_id.item())
|
60 |
+
decoded = current_tokenizer.decode(output_ids, skip_special_tokens=True)
|
61 |
+
updated_history[-1] = (history[-1][0], decoded)
|
62 |
+
yield updated_history
|
63 |
|
64 |
+
# When user submits a message
|
65 |
+
def add_user_message(message, history):
|
66 |
+
return "", history + [(message, "")]
|
67 |
|
68 |
+
# Model choices
|
69 |
model_choices = [
|
70 |
"meta-llama/Llama-3.2-3B-Instruct",
|
71 |
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
|
|
74 |
|
75 |
# Gradio UI
|
76 |
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("## Clinical Chatbot — LLaMA, DeepSeek, Gemma")
|
78 |
|
|
|
79 |
default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")
|
80 |
|
81 |
+
with gr.Row():
|
82 |
+
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
|
83 |
+
model_status = gr.Textbox(label="Model Status", interactive=False)
|
84 |
|
85 |
+
chatbot = gr.Chatbot(label="Chat")
|
86 |
+
msg = gr.Textbox(label="Your Message", placeholder="Enter your clinical query...", show_label=False)
|
87 |
+
clear_btn = gr.Button("Clear Chat")
|
88 |
|
89 |
+
# Load model on launch
|
90 |
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
|
91 |
|
92 |
+
# Load model on dropdown selection
|
93 |
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
|
94 |
|
95 |
+
# On message submit: update history, then stream bot reply
|
96 |
+
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
|
97 |
+
fn=chat_with_model, inputs=chatbot, outputs=chatbot
|
98 |
+
)
|
99 |
+
|
100 |
+
# Clear chat
|
101 |
+
clear_btn.click(lambda: [], None, chatbot, queue=False)
|
102 |
|
103 |
demo.launch()
|