File size: 4,993 Bytes
d0f4aff 5968a97 2db3bb3 d0f4aff 5968a97 719a76f 4b15ccd 2db3bb3 b6b7c74 0ebe852 b6b7c74 2db3bb3 b6b7c74 65d5ebe b6b7c74 5968a97 2db3bb3 5968a97 2db3bb3 5968a97 4b15ccd 5968a97 2db3bb3 5968a97 2db3bb3 b6b7c74 5e84c69 b16f2d9 719a76f b16f2d9 da4880c b16f2d9 7ee1641 b16f2d9 7ee1641 0115682 d0f4aff 2db3bb3 4b15ccd 2db3bb3 5e84c69 2db3bb3 b6b7c74 2db3bb3 0115682 2db3bb3 0115682 2db3bb3 4b15ccd 0ebe852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import torch
import time
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
# @spaces.GPU
# def chat_with_model(messages):
# global current_model, current_tokenizer
# if current_model is None or current_tokenizer is None:
# yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
# return
# current_model.to("cuda").half()
# prompt = format_prompt(messages)
# inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
# streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=True)
# generation_kwargs = dict(
# **inputs,
# max_new_tokens=256,
# do_sample=True,
# streamer=streamer
# )
# # Launch generation in a background thread
# thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs)
# thread.start()
# output_text = ""
# messages = messages.copy()
# messages.append({"role": "assistant", "content": ""})
# for new_text in streamer:
# output_text += new_text
# messages[-1]["content"] = output_text
# yield messages
# current_model.to("cpu")
# torch.cuda.empty_cache()
# Globals
current_model = None
current_tokenizer = None
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
global current_model, current_tokenizer
token = os.getenv("HF_TOKEN")
progress(0, desc="Loading tokenizer...")
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
progress(0.5, desc="Loading model...")
current_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu", # loaded to CPU initially
use_auth_token=token
)
progress(1, desc="Model ready.")
return f"{model_name} loaded and ready!"
# Format conversation as plain text
def format_prompt(messages):
prompt = ""
for msg in messages:
role = msg["role"]
if role == "user":
prompt += f"User: {msg['content'].strip()}\n"
elif role == "assistant":
prompt += f"Assistant: {msg['content'].strip()}\n"
prompt += "Assistant:"
return prompt
def add_user_message(user_input, history):
return "", history + [{"role": "user", "content": user_input}]
# Available models
model_choices = [
"meta-llama/Llama-3.2-3B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"google/gemma-7b"
]
# UI
with gr.Blocks() as demo:
gr.Markdown("## Clinical Chatbot (Streaming) — LLaMA, DeepSeek, Gemma")
default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")
@spaces.GPU
def chat_with_model(messages):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
return
current_model = current_model.to("cuda").half()
prompt = format_prompt(messages)
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
output_ids = []
messages = messages.copy()
messages.append({"role": "assistant", "content": ""})
for token_id in current_model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
return_dict_in_generate=True,
output_scores=False
).sequences[0][inputs['input_ids'].shape[-1]:]: # skip input tokens
output_ids.append(token_id.item())
decoded = current_tokenizer.decode(output_ids, skip_special_tokens=False)
if output_ids[-1] == current_tokenizer.eos_token_id:
current_model.to("cpu")
torch.cuda.empty_cache()
return
messages[-1]["content"] = decoded
yield messages
current_model.to("cpu")
torch.cuda.empty_cache()
return
with gr.Row():
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
model_status = gr.Textbox(label="Model Status", interactive=False)
chatbot = gr.Chatbot(label="Chat", type="messages")
msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
clear = gr.Button("Clear")
# Load default model on startup
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
# Load selected model manually
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
# Submit message + stream model response
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
chat_with_model, chatbot, chatbot
)
# Clear chat
clear.click(lambda: [], None, chatbot, queue=False)
demo.launch()
|