CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
ef6f12c verified
raw
history blame
11.4 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5 + 1
def extract_text_from_excel(file_path: str) -> str:
all_text = []
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name).astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
effective_max = max_tokens - PROMPT_OVERHEAD
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
for line in lines:
t = estimate_tokens(line)
if curr_tokens + t > effective_max:
if curr_chunk:
chunks.append("\n".join(curr_chunk))
curr_chunk, curr_tokens = [line], t
else:
curr_chunk.append(line)
curr_tokens += t
if curr_chunk:
chunks.append("\n".join(curr_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
Analyze the following clinical notes and provide a detailed, concise summary focusing on:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
---
{chunk}
---
Respond in well-structured bullet points with medical reasoning.
"""
def init_agent():
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
messages = chatbot_state if chatbot_state else []
if file is None or not hasattr(file, "name"):
return messages + [{"role": "assistant", "content": "❌ Please upload a valid Excel file."}], None
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(text)
chunk_responses = [None] * len(chunks)
def analyze_chunk(i, chunk):
prompt = build_prompt_from_text(chunk)
response = ""
for res in agent.run_gradio_chat(message=prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]):
if isinstance(res, str):
response += res
elif hasattr(res, "content"):
response += res.content
elif isinstance(res, list):
for r in res:
if hasattr(r, "content"):
response += r.content
return i, clean_response(response)
with ThreadPoolExecutor(max_workers=1) as executor:
futures = [executor.submit(analyze_chunk, i, c) for i, c in enumerate(chunks)]
for f in as_completed(futures):
i, result = f.result()
chunk_responses[i] = result
valid = [r for r in chunk_responses if r and not r.startswith("❌")]
if not valid:
return messages + [{"role": "assistant", "content": "❌ No valid chunk results."}], None
summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid)
messages.append({"role": "assistant", "content": "📊 Generating final report..."})
final_report = ""
for res in agent.run_gradio_chat(message=summary_prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]):
if isinstance(res, str):
final_report += res
elif hasattr(res, "content"):
final_report += res.content
cleaned = clean_response(final_report)
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(f"# 🧠 Final Patient Report\n\n{cleaned}")
messages.append({"role": "assistant", "content": f"📊 Final Report:\n\n{cleaned}"})
messages.append({"role": "assistant", "content": f"✅ Report generated and saved: {os.path.basename(report_path)}"})
return messages, report_path
def create_ui(agent):
with gr.Blocks(css="""
:root {
--primary-color: #2563eb;
--secondary-color: #1e40af;
--bg-color: #f8fafc;
--text-color: #1e293b;
--user-bubble: #ffffff;
--bot-bubble: #f1f5f9;
--border-color: #e2e8f0;
}
body {
font-family: 'Inter', sans-serif;
background-color: var(--bg-color);
color: var(--text-color);
}
.gradio-container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
background-color: var(--bg-color);
}
.chat-container {
display: flex;
flex-direction: column;
height: 80vh;
border: 1px solid var(--border-color);
border-radius: 12px;
overflow: hidden;
background-color: white;
}
.chat-header {
padding: 16px;
background-color: white;
border-bottom: 1px solid var(--border-color);
font-weight: 600;
font-size: 18px;
}
.chat-messages {
flex: 1;
padding: 16px;
overflow-y: auto;
background-color: var(--bg-color);
}
.message {
display: flex;
margin-bottom: 16px;
align-items: flex-start;
}
.message-avatar {
width: 36px;
height: 36px;
border-radius: 50%;
margin-right: 12px;
background-color: var(--primary-color);
color: white;
display: flex;
align-items: center;
justify-content: center;
font-weight: bold;
}
.message-content {
max-width: 80%;
}
.user-message .message-content {
margin-left: auto;
background-color: var(--user-bubble);
padding: 12px 16px;
border-radius: 18px 18px 0 18px;
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
}
.bot-message .message-content {
background-color: var(--bot-bubble);
padding: 12px 16px;
border-radius: 18px 18px 18px 0;
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
}
.message-time {
font-size: 12px;
color: #64748b;
margin-top: 4px;
}
.chat-input-container {
padding: 16px;
background-color: white;
border-top: 1px solid var(--border-color);
}
.file-upload {
display: flex;
gap: 8px;
margin-bottom: 12px;
}
.upload-btn {
flex: 1;
}
.analyze-btn {
background-color: var(--primary-color);
color: white;
border: none;
padding: 10px 16px;
border-radius: 8px;
cursor: pointer;
font-weight: 500;
}
.analyze-btn:hover {
background-color: var(--secondary-color);
}
.report-download {
margin-top: 12px;
padding: 12px;
background-color: var(--bot-bubble);
border-radius: 8px;
display: none;
}
""") as demo:
with gr.Column(elem_classes="chat-container"):
gr.Markdown("""<div class="chat-header">Patient History AI Assistant</div>""")
chatbot = gr.Chatbot(
elem_classes="chat-messages",
label=None,
show_label=False,
bubble_full_width=False,
avatar_images=[
"https://ui-avatars.com/api/?name=AI&background=2563eb&color=fff&size=128", # Bot avatar
None # User avatar (default)
]
)
with gr.Column(elem_classes="chat-input-container"):
with gr.Row(elem_classes="file-upload"):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
elem_classes="upload-btn",
scale=4
)
analyze_btn = gr.Button(
"Analyze",
elem_classes="analyze-btn",
scale=1
)
report_output = gr.File(
label="Download Report",
visible=False,
interactive=False,
elem_classes="report-download"
)
chatbot_state = gr.State(value=[])
def update_ui(file, current_state):
messages, report_path = process_final_report(agent, file, current_state)
return messages, gr.update(visible=report_path is not None, value=report_path), messages
analyze_btn.click(
fn=update_ui,
inputs=[file_upload, chatbot_state],
outputs=[chatbot, report_output, chatbot_state]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)