import sys import os import pandas as pd import json import gradio as gr from typing import List, Tuple, Dict, Any, Union import hashlib import shutil import re from datetime import datetime from concurrent.futures import ThreadPoolExecutor, as_completed # Setup directories persistent_dir = "/data/hf_cache" os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") tool_cache_dir = os.path.join(persistent_dir, "tool_cache") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: os.makedirs(d, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src"))) from txagent.txagent import TxAgent MAX_MODEL_TOKENS = 32768 MAX_CHUNK_TOKENS = 8192 MAX_NEW_TOKENS = 2048 PROMPT_OVERHEAD = 500 def clean_response(text: str) -> str: text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) text = re.sub(r"\n{3,}", "\n\n", text) text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) return text.strip() def estimate_tokens(text: str) -> int: return len(text) // 3.5 + 1 def extract_text_from_excel(file_path: str) -> str: all_text = [] xls = pd.ExcelFile(file_path) for sheet_name in xls.sheet_names: df = xls.parse(sheet_name).astype(str).fillna("") rows = df.apply(lambda row: " | ".join(row), axis=1) sheet_text = [f"[{sheet_name}] {line}" for line in rows] all_text.extend(sheet_text) return "\n".join(all_text) def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]: effective_max = max_tokens - PROMPT_OVERHEAD lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0 for line in lines: t = estimate_tokens(line) if curr_tokens + t > effective_max: if curr_chunk: chunks.append("\n".join(curr_chunk)) curr_chunk, curr_tokens = [line], t else: curr_chunk.append(line) curr_tokens += t if curr_chunk: chunks.append("\n".join(curr_chunk)) return chunks def build_prompt_from_text(chunk: str) -> str: return f""" ### Unstructured Clinical Records Analyze the following clinical notes and provide a detailed, concise summary focusing on: - Diagnostic Patterns - Medication Issues - Missed Opportunities - Inconsistencies - Follow-up Recommendations --- {chunk} --- Respond in well-structured bullet points with medical reasoning. """ def init_agent(): tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(tool_path): shutil.copy(os.path.abspath("data/new_tool.json"), tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": tool_path}, force_finish=True, enable_checker=True, step_rag_num=4, seed=100 ) agent.init_model() return agent def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]: messages = chatbot_state if chatbot_state else [] if file is None or not hasattr(file, "name"): return messages + [{"role": "assistant", "content": "❌ Please upload a valid Excel file."}], None messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"}) text = extract_text_from_excel(file.name) chunks = split_text_into_chunks(text) chunk_responses = [None] * len(chunks) def analyze_chunk(i, chunk): prompt = build_prompt_from_text(chunk) response = "" for res in agent.run_gradio_chat(message=prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]): if isinstance(res, str): response += res elif hasattr(res, "content"): response += res.content elif isinstance(res, list): for r in res: if hasattr(r, "content"): response += r.content return i, clean_response(response) with ThreadPoolExecutor(max_workers=1) as executor: futures = [executor.submit(analyze_chunk, i, c) for i, c in enumerate(chunks)] for f in as_completed(futures): i, result = f.result() chunk_responses[i] = result valid = [r for r in chunk_responses if r and not r.startswith("❌")] if not valid: return messages + [{"role": "assistant", "content": "❌ No valid chunk results."}], None summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid) messages.append({"role": "assistant", "content": "📊 Generating final report..."}) final_report = "" for res in agent.run_gradio_chat(message=summary_prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]): if isinstance(res, str): final_report += res elif hasattr(res, "content"): final_report += res.content cleaned = clean_response(final_report) report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md") with open(report_path, 'w') as f: f.write(f"# 🧠 Final Patient Report\n\n{cleaned}") messages.append({"role": "assistant", "content": f"📊 Final Report:\n\n{cleaned}"}) messages.append({"role": "assistant", "content": f"✅ Report generated and saved: {os.path.basename(report_path)}"}) return messages, report_path def create_ui(agent): with gr.Blocks(css=""" :root { --primary-color: #2563eb; --secondary-color: #1e40af; --bg-color: #f8fafc; --text-color: #1e293b; --user-bubble: #ffffff; --bot-bubble: #f1f5f9; --border-color: #e2e8f0; } body { font-family: 'Inter', sans-serif; background-color: var(--bg-color); color: var(--text-color); } .gradio-container { max-width: 800px; margin: 0 auto; padding: 20px; background-color: var(--bg-color); } .chat-container { display: flex; flex-direction: column; height: 80vh; border: 1px solid var(--border-color); border-radius: 12px; overflow: hidden; background-color: white; } .chat-header { padding: 16px; background-color: white; border-bottom: 1px solid var(--border-color); font-weight: 600; font-size: 18px; } .chat-messages { flex: 1; padding: 16px; overflow-y: auto; background-color: var(--bg-color); } .message { display: flex; margin-bottom: 16px; align-items: flex-start; } .message-avatar { width: 36px; height: 36px; border-radius: 50%; margin-right: 12px; background-color: var(--primary-color); color: white; display: flex; align-items: center; justify-content: center; font-weight: bold; } .message-content { max-width: 80%; } .user-message .message-content { margin-left: auto; background-color: var(--user-bubble); padding: 12px 16px; border-radius: 18px 18px 0 18px; box-shadow: 0 1px 2px rgba(0,0,0,0.1); } .bot-message .message-content { background-color: var(--bot-bubble); padding: 12px 16px; border-radius: 18px 18px 18px 0; box-shadow: 0 1px 2px rgba(0,0,0,0.1); } .message-time { font-size: 12px; color: #64748b; margin-top: 4px; } .chat-input-container { padding: 16px; background-color: white; border-top: 1px solid var(--border-color); } .file-upload { display: flex; gap: 8px; margin-bottom: 12px; } .upload-btn { flex: 1; } .analyze-btn { background-color: var(--primary-color); color: white; border: none; padding: 10px 16px; border-radius: 8px; cursor: pointer; font-weight: 500; } .analyze-btn:hover { background-color: var(--secondary-color); } .report-download { margin-top: 12px; padding: 12px; background-color: var(--bot-bubble); border-radius: 8px; display: none; } """) as demo: with gr.Column(elem_classes="chat-container"): gr.Markdown("""
Patient History AI Assistant
""") chatbot = gr.Chatbot( elem_classes="chat-messages", label=None, show_label=False, bubble_full_width=False, avatar_images=[ "https://ui-avatars.com/api/?name=AI&background=2563eb&color=fff&size=128", # Bot avatar None # User avatar (default) ] ) with gr.Column(elem_classes="chat-input-container"): with gr.Row(elem_classes="file-upload"): file_upload = gr.File( label="Upload Excel File", file_types=[".xlsx"], elem_classes="upload-btn", scale=4 ) analyze_btn = gr.Button( "Analyze", elem_classes="analyze-btn", scale=1 ) report_output = gr.File( label="Download Report", visible=False, interactive=False, elem_classes="report-download" ) chatbot_state = gr.State(value=[]) def update_ui(file, current_state): messages, report_path = process_final_report(agent, file, current_state) return messages, gr.update(visible=report_path is not None, value=report_path), messages analyze_btn.click( fn=update_ui, inputs=[file_upload, chatbot_state], outputs=[chatbot, report_output, chatbot_state] ) return demo if __name__ == "__main__": try: agent = init_agent() demo = create_ui(agent) demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False) except Exception as e: print(f"Error: {str(e)}") sys.exit(1)