File size: 9,018 Bytes
1777737 3a20a5b 728def5 3a20a5b fb0ec4e dfe34bb 446fbec 841c3cb 0e7a2f6 dfe34bb 8505d49 fb0ec4e 41a5d42 1219574 aeab9ad 41a5d42 aeab9ad 41a5d42 1005ff4 13fb959 28560cd dfe34bb 28560cd 446fbec 3a20a5b 41945fe 3a20a5b e5c81fc 1219574 e5c81fc 3a20a5b ff7a915 446fbec fb0ec4e ff7a915 dfe34bb 5ff2c92 dfe34bb 28560cd dfe34bb 28560cd 446fbec 28560cd 446fbec dfe34bb 446fbec 28560cd 446fbec fb0ec4e 446fbec fb0ec4e 446fbec dfe34bb 5ff2c92 dfe34bb fb0ec4e dfe34bb fb0ec4e 3a20a5b fb0ec4e 3a20a5b 774fd26 edb2500 28560cd dfe34bb 4e4aafc 13fb959 4e4aafc 1219574 dfe34bb 4a6ed35 7c14cc2 9086c95 13fb959 dfe34bb 28560cd 5ff2c92 28560cd 15df552 28560cd c87fc4e 57d92c0 edb2500 9086c95 c87fc4e 9086c95 c87fc4e 9086c95 5ff2c92 9086c95 15df552 5ff2c92 446fbec 9086c95 5ff2c92 adec3a7 9086c95 7c14cc2 9086c95 15df552 57d92c0 9086c95 88317c7 3a20a5b 57d92c0 88317c7 3a20a5b 28560cd 3ae42d2 3a20a5b 3492c23 1219574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import sys
import os
import pandas as pd
import pdfplumber
import gradio as gr
from typing import List
# ✅ Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def clean_final_response(text: str) -> str:
cleaned = text.replace("[TOOL_CALLS]", "").strip()
sections = cleaned.split("[Final Analysis]")
if len(sections) > 1:
final = sections[1].strip()
formatted_final = final.replace("\n", "</li><li style='margin-bottom:0.75em;'>")
return (
"<div style='padding:1em;border:2px solid #4B4CED;background:#242C3B;border-radius:12px;color:#fff;'>"
"<h3 style='margin-top:0;color:#37B6E9;'>🧠 Final Analysis</h3>"
f"<ul><li style='margin-bottom:0.75em;'>{formatted_final}</li></ul>"
"</div>"
)
return f"<div style='padding:1em;border:1px solid #ccc;border-radius:12px;color:#fff;background:#353F54;'><p>{cleaned}</p></div>"
def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, total=1) -> str:
try:
if not os.path.exists(file_path):
return f"File not found: {file_path}"
if progress:
progress((index + 1) / total, desc=f"Reading spreadsheet: {os.path.basename(file_path)}")
if file_path.endswith(".csv"):
df = pd.read_csv(file_path, encoding="utf-8", errors="replace", low_memory=False)
elif file_path.endswith((".xls", ".xlsx")):
try:
df = pd.read_excel(file_path, engine="openpyxl")
except:
df = pd.read_excel(file_path, engine="xlrd")
else:
return f"Unsupported spreadsheet format: {file_path}"
lines = []
for _, row in df.iterrows():
line = " | ".join(str(cell) for cell in row if pd.notna(cell))
if line:
lines.append(line)
return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n".join(lines)
except Exception as e:
return f"[Error reading {os.path.basename(file_path)}]: {str(e)}"
def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -> str:
try:
if not os.path.exists(file_path):
return f"PDF not found: {file_path}"
extracted = []
with pdfplumber.open(file_path) as pdf:
num_pages = len(pdf.pages)
for i, page in enumerate(pdf.pages):
try:
text = page.extract_text() or ""
extracted.append(text.strip())
if progress:
progress((index + (i / num_pages)) / total, desc=f"Reading PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
except Exception as e:
extracted.append(f"[Error reading page {i+1}]: {str(e)}")
return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n\n".join(extracted)
except Exception as e:
return f"[Error reading PDF {os.path.basename(file_path)}]: {str(e)}"
def chunk_text(text: str, max_tokens: int = 8192) -> List[str]:
chunks = []
words = text.split()
chunk = []
token_count = 0
for word in words:
token_count += len(word) // 4 + 1
if token_count > max_tokens:
chunks.append(" ".join(chunk))
chunk = [word]
token_count = len(word) // 4 + 1
else:
chunk.append(word)
if chunk:
chunks.append(" ".join(chunk))
return chunks
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>\U0001F4CB CPS: Clinical Patient Support System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="tuples")
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
context = (
"You are an expert clinical AI assistant reviewing medical form or interview data. "
"Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. "
"Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. "
"Ensure the output is informative and helpful for improving patient care. "
"Do not hallucinate. Base the response only on the provided form content. "
"End with a section labeled '[Final Analysis]' where you summarize key findings the doctor may have missed."
)
try:
history.append((message, "⏳ Processing your request..."))
yield history
extracted_text = ""
if uploaded_files and isinstance(uploaded_files, list):
total_files = len(uploaded_files)
for index, file in enumerate(uploaded_files):
if not hasattr(file, 'name'):
continue
path = file.name
try:
if path.endswith((".csv", ".xls", ".xlsx")):
extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
elif path.endswith(".pdf"):
extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
else:
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
except Exception as file_error:
extracted_text += f"[Error processing {os.path.basename(path)}]: {str(file_error)}\n"
sanitized = sanitize_utf8(extracted_text.strip())
chunks = chunk_text(sanitized)
full_response = ""
for i, chunk in enumerate(chunks):
chunked_prompt = (
f"{context}\n\n--- Uploaded File Content (Chunk {i+1}/{len(chunks)}) ---\n\n{chunk}\n\n"
f"--- End of Chunk ---\n\nNow begin your analysis:"
)
generator = agent.run_gradio_chat(
message=chunked_prompt,
history=[],
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=30
)
chunk_response = ""
for update in generator:
if isinstance(update, str):
chunk_response += update
elif isinstance(update, list):
for msg in update:
if hasattr(msg, 'content'):
chunk_response += msg.content
full_response += chunk_response + "\n\n"
full_response = clean_final_response(full_response.strip())
history[-1] = (message, full_response)
yield history
except Exception as chat_error:
print(f"Chat handling error: {chat_error}")
error_msg = "An error occurred while processing your request. Please try again."
if len(history) > 0 and history[-1][1].startswith("⏳"):
history[-1] = (history[-1][0], error_msg)
else:
history.append((message, error_msg))
yield history
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might've missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo
|