Update ui/ui_core.py
Browse files- ui/ui_core.py +31 -59
ui/ui_core.py
CHANGED
@@ -3,8 +3,7 @@ import os
|
|
3 |
import pandas as pd
|
4 |
import pdfplumber
|
5 |
import gradio as gr
|
6 |
-
import
|
7 |
-
from typing import List, Dict, Optional
|
8 |
|
9 |
# ✅ Fix: Add src to Python path
|
10 |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
|
@@ -12,43 +11,12 @@ sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..",
|
|
12 |
from txagent.txagent import TxAgent
|
13 |
|
14 |
def sanitize_utf8(text: str) -> str:
|
15 |
-
""
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
"""Remove tool calls and other artifacts from final response"""
|
20 |
-
# Split on TOOL_CALLS if present
|
21 |
-
if '[TOOL_CALLS]' in response:
|
22 |
-
response = response.split('[TOOL_CALLS]')[0]
|
23 |
-
# Remove any remaining special tokens
|
24 |
-
response = re.sub(r'\[[A-Z_]+\]', '', response)
|
25 |
-
return response.strip()
|
26 |
-
|
27 |
-
def chunk_text(text: str, max_tokens: int = 8000) -> List[str]:
|
28 |
-
"""Split text into chunks based on token count estimate"""
|
29 |
-
words = text.split()
|
30 |
-
chunks = []
|
31 |
-
current_chunk = []
|
32 |
-
current_tokens = 0
|
33 |
-
|
34 |
-
for word in words:
|
35 |
-
# Estimate tokens (roughly 1 token per 4 characters)
|
36 |
-
word_tokens = len(word) // 4 + 1
|
37 |
-
if current_tokens + word_tokens > max_tokens and current_chunk:
|
38 |
-
chunks.append(' '.join(current_chunk))
|
39 |
-
current_chunk = [word]
|
40 |
-
current_tokens = word_tokens
|
41 |
-
else:
|
42 |
-
current_chunk.append(word)
|
43 |
-
current_tokens += word_tokens
|
44 |
-
|
45 |
-
if current_chunk:
|
46 |
-
chunks.append(' '.join(current_chunk))
|
47 |
-
|
48 |
-
return chunks
|
49 |
|
50 |
def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, total=1) -> str:
|
51 |
-
"""Extract text from spreadsheet files with error handling"""
|
52 |
try:
|
53 |
if not os.path.exists(file_path):
|
54 |
return f"File not found: {file_path}"
|
@@ -68,13 +36,12 @@ def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, t
|
|
68 |
line = " | ".join(str(cell) for cell in row if pd.notna(cell))
|
69 |
if line:
|
70 |
lines.append(line)
|
71 |
-
return f"
|
72 |
|
73 |
except Exception as e:
|
74 |
return f"[Error reading {os.path.basename(file_path)}]: {str(e)}"
|
75 |
|
76 |
def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -> str:
|
77 |
-
"""Extract text from PDF files with error handling"""
|
78 |
try:
|
79 |
if not os.path.exists(file_path):
|
80 |
return f"PDF not found: {file_path}"
|
@@ -87,31 +54,42 @@ def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -
|
|
87 |
text = page.extract_text() or ""
|
88 |
extracted.append(text.strip())
|
89 |
if progress:
|
90 |
-
progress((index + (i / num_pages)) / total,
|
91 |
-
desc=f"Reading PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
|
92 |
except Exception as e:
|
93 |
extracted.append(f"[Error reading page {i+1}]: {str(e)}")
|
94 |
-
return f"
|
95 |
|
96 |
except Exception as e:
|
97 |
return f"[Error reading PDF {os.path.basename(file_path)}]: {str(e)}"
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def create_ui(agent: TxAgent):
|
100 |
-
with gr.Blocks(theme=gr.themes.Soft()
|
101 |
-
gr.Markdown("<h1 style='text-align: center;'
|
102 |
-
|
103 |
-
|
104 |
-
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
|
105 |
-
|
106 |
file_upload = gr.File(
|
107 |
label="Upload Medical File",
|
108 |
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
|
109 |
file_count="multiple"
|
110 |
)
|
111 |
-
message_input = gr.Textbox(
|
112 |
-
placeholder="Ask a biomedical question or just upload the files...",
|
113 |
-
show_label=False
|
114 |
-
)
|
115 |
send_button = gr.Button("Send", variant="primary")
|
116 |
conversation_state = gr.State([])
|
117 |
|
@@ -126,7 +104,6 @@ def create_ui(agent: TxAgent):
|
|
126 |
)
|
127 |
|
128 |
try:
|
129 |
-
# Show processing message immediately
|
130 |
history.append((message, "⏳ Processing your request..."))
|
131 |
yield history
|
132 |
|
@@ -169,23 +146,18 @@ def create_ui(agent: TxAgent):
|
|
169 |
max_round=30
|
170 |
)
|
171 |
|
172 |
-
# Collect all updates from the generator
|
173 |
chunk_response = ""
|
174 |
for update in generator:
|
175 |
if isinstance(update, str):
|
176 |
chunk_response += update
|
177 |
elif isinstance(update, list):
|
178 |
-
# Handle list of messages
|
179 |
for msg in update:
|
180 |
if hasattr(msg, 'content'):
|
181 |
chunk_response += msg.content
|
182 |
|
183 |
full_response += chunk_response + "\n\n"
|
184 |
|
185 |
-
# Clean up the final response
|
186 |
full_response = clean_final_response(full_response.strip())
|
187 |
-
|
188 |
-
# Remove the processing message and add the final response
|
189 |
history[-1] = (message, full_response)
|
190 |
yield history
|
191 |
|
@@ -208,4 +180,4 @@ def create_ui(agent: TxAgent):
|
|
208 |
["Is there anything abnormal in the attached blood work report?"]
|
209 |
], inputs=message_input)
|
210 |
|
211 |
-
return demo
|
|
|
3 |
import pandas as pd
|
4 |
import pdfplumber
|
5 |
import gradio as gr
|
6 |
+
from typing import List
|
|
|
7 |
|
8 |
# ✅ Fix: Add src to Python path
|
9 |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
|
|
|
11 |
from txagent.txagent import TxAgent
|
12 |
|
13 |
def sanitize_utf8(text: str) -> str:
|
14 |
+
return text.encode("utf-8", "ignore").decode("utf-8")
|
15 |
+
|
16 |
+
def clean_final_response(text: str) -> str:
|
17 |
+
return text.replace("[TOOL_CALLS]", "").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, total=1) -> str:
|
|
|
20 |
try:
|
21 |
if not os.path.exists(file_path):
|
22 |
return f"File not found: {file_path}"
|
|
|
36 |
line = " | ".join(str(cell) for cell in row if pd.notna(cell))
|
37 |
if line:
|
38 |
lines.append(line)
|
39 |
+
return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n".join(lines)
|
40 |
|
41 |
except Exception as e:
|
42 |
return f"[Error reading {os.path.basename(file_path)}]: {str(e)}"
|
43 |
|
44 |
def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -> str:
|
|
|
45 |
try:
|
46 |
if not os.path.exists(file_path):
|
47 |
return f"PDF not found: {file_path}"
|
|
|
54 |
text = page.extract_text() or ""
|
55 |
extracted.append(text.strip())
|
56 |
if progress:
|
57 |
+
progress((index + (i / num_pages)) / total, desc=f"Reading PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
|
|
|
58 |
except Exception as e:
|
59 |
extracted.append(f"[Error reading page {i+1}]: {str(e)}")
|
60 |
+
return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n\n".join(extracted)
|
61 |
|
62 |
except Exception as e:
|
63 |
return f"[Error reading PDF {os.path.basename(file_path)}]: {str(e)}"
|
64 |
|
65 |
+
def chunk_text(text: str, max_tokens: int = 8192) -> List[str]:
|
66 |
+
chunks = []
|
67 |
+
words = text.split()
|
68 |
+
chunk = []
|
69 |
+
token_count = 0
|
70 |
+
for word in words:
|
71 |
+
token_count += len(word) // 4 + 1
|
72 |
+
if token_count > max_tokens:
|
73 |
+
chunks.append(" ".join(chunk))
|
74 |
+
chunk = [word]
|
75 |
+
token_count = len(word) // 4 + 1
|
76 |
+
else:
|
77 |
+
chunk.append(word)
|
78 |
+
if chunk:
|
79 |
+
chunks.append(" ".join(chunk))
|
80 |
+
return chunks
|
81 |
+
|
82 |
def create_ui(agent: TxAgent):
|
83 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
84 |
+
gr.Markdown("<h1 style='text-align: center;'>\U0001F4CB CPS: Clinical Patient Support System</h1>")
|
85 |
+
|
86 |
+
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="tuples")
|
|
|
|
|
87 |
file_upload = gr.File(
|
88 |
label="Upload Medical File",
|
89 |
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
|
90 |
file_count="multiple"
|
91 |
)
|
92 |
+
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
|
|
|
|
|
|
|
93 |
send_button = gr.Button("Send", variant="primary")
|
94 |
conversation_state = gr.State([])
|
95 |
|
|
|
104 |
)
|
105 |
|
106 |
try:
|
|
|
107 |
history.append((message, "⏳ Processing your request..."))
|
108 |
yield history
|
109 |
|
|
|
146 |
max_round=30
|
147 |
)
|
148 |
|
|
|
149 |
chunk_response = ""
|
150 |
for update in generator:
|
151 |
if isinstance(update, str):
|
152 |
chunk_response += update
|
153 |
elif isinstance(update, list):
|
|
|
154 |
for msg in update:
|
155 |
if hasattr(msg, 'content'):
|
156 |
chunk_response += msg.content
|
157 |
|
158 |
full_response += chunk_response + "\n\n"
|
159 |
|
|
|
160 |
full_response = clean_final_response(full_response.strip())
|
|
|
|
|
161 |
history[-1] = (message, full_response)
|
162 |
yield history
|
163 |
|
|
|
180 |
["Is there anything abnormal in the attached blood work report?"]
|
181 |
], inputs=message_input)
|
182 |
|
183 |
+
return demo
|