Ali2206 commited on
Commit
3a20a5b
·
verified ·
1 Parent(s): 1209f76

Update ui/ui_core.py

Browse files
Files changed (1) hide show
  1. ui/ui_core.py +45 -40
ui/ui_core.py CHANGED
@@ -1,32 +1,42 @@
1
- import gradio as gr
2
- import os
3
  import sys
 
4
  import pandas as pd
5
  import pdfplumber
 
6
 
7
- # Add src to Python path
8
  sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
9
  from txagent.txagent import TxAgent
10
 
11
 
12
- def extract_all_text_from_csv(file_path):
13
  try:
14
- df = pd.read_csv(file_path, low_memory=False)
 
 
 
 
 
 
 
15
  return df.to_string(index=False)
16
  except Exception as e:
17
- return f"Error parsing CSV: {e}"
18
 
19
 
20
- def extract_all_text_from_pdf(file_path):
21
  extracted = []
22
  try:
23
  with pdfplumber.open(file_path) as pdf:
24
- for page in pdf.pages:
 
25
  tables = page.extract_tables()
26
  for table in tables:
27
  for row in table:
28
  if any(row):
29
  extracted.append("\t".join([cell or "" for cell in row]))
 
 
30
  return "\n".join(extracted)
31
  except Exception as e:
32
  return f"Error parsing PDF: {e}"
@@ -34,45 +44,39 @@ def extract_all_text_from_pdf(file_path):
34
 
35
  def create_ui(agent: TxAgent):
36
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
37
- gr.Markdown("<h1 style='text-align: center;'>🧠 CPS: Clinical Processing System</h1>")
38
- chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
39
-
40
- # Hidden file upload, attached to input bar
41
- with gr.Row():
42
- uploaded_files = gr.File(
43
- label="📎", file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv"],
44
- file_count="multiple", visible=False
45
- )
46
-
47
- with gr.Column(scale=10):
48
- message_input = gr.Textbox(
49
- placeholder="Type your medical question or upload files...", show_label=False, scale=10
50
- )
51
-
52
- with gr.Column(scale=1, min_width=60):
53
- file_icon = gr.UploadButton("📎", file_types=[".pdf", ".csv", ".docx", ".txt", ".jpg", ".png"], file_count="multiple")
54
-
55
- send_button = gr.Button("Send", variant="primary")
56
-
57
  conversation_state = gr.State([])
58
 
59
- def handle_chat(message, history, conversation, new_files):
60
  context = (
61
  "You are a clinical AI reviewing medical interview or form data. "
62
  "Analyze the extracted content and reason step-by-step about what the doctor could have missed. "
63
  "Don't answer yet — just reason."
64
  )
65
 
66
- if new_files:
67
  extracted_text = ""
68
- for file in new_files:
 
 
69
  path = file.name
70
- if path.endswith(".csv"):
71
- extracted_text += extract_all_text_from_csv(path) + "\n"
72
  elif path.endswith(".pdf"):
73
- extracted_text += extract_all_text_from_pdf(path) + "\n"
74
  else:
75
  extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
 
 
76
 
77
  message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."
78
 
@@ -84,17 +88,18 @@ def create_ui(agent: TxAgent):
84
  max_token=8192,
85
  call_agent=False,
86
  conversation=conversation,
87
- uploaded_files=new_files,
88
  max_round=30
89
  )
90
  for update in generator:
91
  yield update
92
 
93
- # Bind send logic
94
- file_icon.upload(fn=None, inputs=[], outputs=[uploaded_files])
95
- send_button.click(fn=handle_chat, inputs=[message_input, chatbot, conversation_state, uploaded_files], outputs=chatbot)
96
- message_input.submit(fn=handle_chat, inputs=[message_input, chatbot, conversation_state, uploaded_files], outputs=chatbot)
97
 
98
- gr.Examples([["Upload your medical form and ask what the doctor might’ve missed."]], inputs=message_input)
 
 
99
 
100
  return demo
 
 
 
1
  import sys
2
+ import os
3
  import pandas as pd
4
  import pdfplumber
5
+ import gradio as gr
6
 
7
+ # Add src to Python path
8
  sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
9
  from txagent.txagent import TxAgent
10
 
11
 
12
+ def extract_all_text_from_csv_or_excel(file_path, progress=None, index=0, total=1):
13
  try:
14
+ if file_path.endswith(".csv"):
15
+ df = pd.read_csv(file_path, low_memory=False)
16
+ elif file_path.endswith((".xls", ".xlsx")):
17
+ df = pd.read_excel(file_path)
18
+ else:
19
+ return f"Unsupported spreadsheet format: {file_path}"
20
+ if progress:
21
+ progress((index + 1) / total, desc=f"Processed table: {os.path.basename(file_path)}")
22
  return df.to_string(index=False)
23
  except Exception as e:
24
+ return f"Error parsing file: {e}"
25
 
26
 
27
+ def extract_all_text_from_pdf(file_path, progress=None, index=0, total=1):
28
  extracted = []
29
  try:
30
  with pdfplumber.open(file_path) as pdf:
31
+ num_pages = len(pdf.pages)
32
+ for i, page in enumerate(pdf.pages):
33
  tables = page.extract_tables()
34
  for table in tables:
35
  for row in table:
36
  if any(row):
37
  extracted.append("\t".join([cell or "" for cell in row]))
38
+ if progress:
39
+ progress((index + i / num_pages) / total, desc=f"Parsing PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
40
  return "\n".join(extracted)
41
  except Exception as e:
42
  return f"Error parsing PDF: {e}"
 
44
 
45
  def create_ui(agent: TxAgent):
46
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
47
+ gr.Markdown("<h1 style='text-align: center;'>💊 TxAgent: Therapeutic Reasoning</h1>")
48
+ chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages")
49
+
50
+ file_upload = gr.File(
51
+ label="Upload Medical File",
52
+ file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
53
+ file_count="multiple"
54
+ )
55
+ message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
56
+ send_button = gr.Button("Send", variant="primary")
 
 
 
 
 
 
 
 
 
 
57
  conversation_state = gr.State([])
58
 
59
+ def handle_chat(message, history, conversation, uploaded_files, progress=gr.Progress()):
60
  context = (
61
  "You are a clinical AI reviewing medical interview or form data. "
62
  "Analyze the extracted content and reason step-by-step about what the doctor could have missed. "
63
  "Don't answer yet — just reason."
64
  )
65
 
66
+ if uploaded_files:
67
  extracted_text = ""
68
+ total_files = len(uploaded_files)
69
+
70
+ for index, file in enumerate(uploaded_files):
71
  path = file.name
72
+ if path.endswith((".csv", ".xls", ".xlsx")):
73
+ extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
74
  elif path.endswith(".pdf"):
75
+ extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
76
  else:
77
  extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
78
+ if progress:
79
+ progress((index + 1) / total_files, desc=f"Skipping unsupported file: {os.path.basename(path)}")
80
 
81
  message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."
82
 
 
88
  max_token=8192,
89
  call_agent=False,
90
  conversation=conversation,
91
+ uploaded_files=uploaded_files,
92
  max_round=30
93
  )
94
  for update in generator:
95
  yield update
96
 
97
+ inputs = [message_input, chatbot, conversation_state, file_upload]
98
+ send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
99
+ message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
 
100
 
101
+ gr.Examples([
102
+ ["Upload the files"],
103
+ ], inputs=message_input)
104
 
105
  return demo