Update ui/ui_core.py
Browse files- ui/ui_core.py +45 -40
ui/ui_core.py
CHANGED
@@ -1,32 +1,42 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
import sys
|
|
|
4 |
import pandas as pd
|
5 |
import pdfplumber
|
|
|
6 |
|
7 |
-
# Add src to Python path
|
8 |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
|
9 |
from txagent.txagent import TxAgent
|
10 |
|
11 |
|
12 |
-
def
|
13 |
try:
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
return df.to_string(index=False)
|
16 |
except Exception as e:
|
17 |
-
return f"Error parsing
|
18 |
|
19 |
|
20 |
-
def extract_all_text_from_pdf(file_path):
|
21 |
extracted = []
|
22 |
try:
|
23 |
with pdfplumber.open(file_path) as pdf:
|
24 |
-
|
|
|
25 |
tables = page.extract_tables()
|
26 |
for table in tables:
|
27 |
for row in table:
|
28 |
if any(row):
|
29 |
extracted.append("\t".join([cell or "" for cell in row]))
|
|
|
|
|
30 |
return "\n".join(extracted)
|
31 |
except Exception as e:
|
32 |
return f"Error parsing PDF: {e}"
|
@@ -34,45 +44,39 @@ def extract_all_text_from_pdf(file_path):
|
|
34 |
|
35 |
def create_ui(agent: TxAgent):
|
36 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
37 |
-
gr.Markdown("<h1 style='text-align: center;'
|
38 |
-
chatbot = gr.Chatbot(label="
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
with gr.Column(scale=10):
|
48 |
-
message_input = gr.Textbox(
|
49 |
-
placeholder="Type your medical question or upload files...", show_label=False, scale=10
|
50 |
-
)
|
51 |
-
|
52 |
-
with gr.Column(scale=1, min_width=60):
|
53 |
-
file_icon = gr.UploadButton("📎", file_types=[".pdf", ".csv", ".docx", ".txt", ".jpg", ".png"], file_count="multiple")
|
54 |
-
|
55 |
-
send_button = gr.Button("Send", variant="primary")
|
56 |
-
|
57 |
conversation_state = gr.State([])
|
58 |
|
59 |
-
def handle_chat(message, history, conversation,
|
60 |
context = (
|
61 |
"You are a clinical AI reviewing medical interview or form data. "
|
62 |
"Analyze the extracted content and reason step-by-step about what the doctor could have missed. "
|
63 |
"Don't answer yet — just reason."
|
64 |
)
|
65 |
|
66 |
-
if
|
67 |
extracted_text = ""
|
68 |
-
|
|
|
|
|
69 |
path = file.name
|
70 |
-
if path.endswith(".csv"):
|
71 |
-
extracted_text +=
|
72 |
elif path.endswith(".pdf"):
|
73 |
-
extracted_text += extract_all_text_from_pdf(path) + "\n"
|
74 |
else:
|
75 |
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
|
|
|
|
|
76 |
|
77 |
message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."
|
78 |
|
@@ -84,17 +88,18 @@ def create_ui(agent: TxAgent):
|
|
84 |
max_token=8192,
|
85 |
call_agent=False,
|
86 |
conversation=conversation,
|
87 |
-
uploaded_files=
|
88 |
max_round=30
|
89 |
)
|
90 |
for update in generator:
|
91 |
yield update
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
message_input.submit(fn=handle_chat, inputs=[message_input, chatbot, conversation_state, uploaded_files], outputs=chatbot)
|
97 |
|
98 |
-
gr.Examples([
|
|
|
|
|
99 |
|
100 |
return demo
|
|
|
|
|
|
|
1 |
import sys
|
2 |
+
import os
|
3 |
import pandas as pd
|
4 |
import pdfplumber
|
5 |
+
import gradio as gr
|
6 |
|
7 |
+
# ✅ Add src to Python path
|
8 |
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
|
9 |
from txagent.txagent import TxAgent
|
10 |
|
11 |
|
12 |
+
def extract_all_text_from_csv_or_excel(file_path, progress=None, index=0, total=1):
|
13 |
try:
|
14 |
+
if file_path.endswith(".csv"):
|
15 |
+
df = pd.read_csv(file_path, low_memory=False)
|
16 |
+
elif file_path.endswith((".xls", ".xlsx")):
|
17 |
+
df = pd.read_excel(file_path)
|
18 |
+
else:
|
19 |
+
return f"Unsupported spreadsheet format: {file_path}"
|
20 |
+
if progress:
|
21 |
+
progress((index + 1) / total, desc=f"Processed table: {os.path.basename(file_path)}")
|
22 |
return df.to_string(index=False)
|
23 |
except Exception as e:
|
24 |
+
return f"Error parsing file: {e}"
|
25 |
|
26 |
|
27 |
+
def extract_all_text_from_pdf(file_path, progress=None, index=0, total=1):
|
28 |
extracted = []
|
29 |
try:
|
30 |
with pdfplumber.open(file_path) as pdf:
|
31 |
+
num_pages = len(pdf.pages)
|
32 |
+
for i, page in enumerate(pdf.pages):
|
33 |
tables = page.extract_tables()
|
34 |
for table in tables:
|
35 |
for row in table:
|
36 |
if any(row):
|
37 |
extracted.append("\t".join([cell or "" for cell in row]))
|
38 |
+
if progress:
|
39 |
+
progress((index + i / num_pages) / total, desc=f"Parsing PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
|
40 |
return "\n".join(extracted)
|
41 |
except Exception as e:
|
42 |
return f"Error parsing PDF: {e}"
|
|
|
44 |
|
45 |
def create_ui(agent: TxAgent):
|
46 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
47 |
+
gr.Markdown("<h1 style='text-align: center;'>💊 TxAgent: Therapeutic Reasoning</h1>")
|
48 |
+
chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages")
|
49 |
+
|
50 |
+
file_upload = gr.File(
|
51 |
+
label="Upload Medical File",
|
52 |
+
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
|
53 |
+
file_count="multiple"
|
54 |
+
)
|
55 |
+
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
|
56 |
+
send_button = gr.Button("Send", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
conversation_state = gr.State([])
|
58 |
|
59 |
+
def handle_chat(message, history, conversation, uploaded_files, progress=gr.Progress()):
|
60 |
context = (
|
61 |
"You are a clinical AI reviewing medical interview or form data. "
|
62 |
"Analyze the extracted content and reason step-by-step about what the doctor could have missed. "
|
63 |
"Don't answer yet — just reason."
|
64 |
)
|
65 |
|
66 |
+
if uploaded_files:
|
67 |
extracted_text = ""
|
68 |
+
total_files = len(uploaded_files)
|
69 |
+
|
70 |
+
for index, file in enumerate(uploaded_files):
|
71 |
path = file.name
|
72 |
+
if path.endswith((".csv", ".xls", ".xlsx")):
|
73 |
+
extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
|
74 |
elif path.endswith(".pdf"):
|
75 |
+
extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
|
76 |
else:
|
77 |
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
|
78 |
+
if progress:
|
79 |
+
progress((index + 1) / total_files, desc=f"Skipping unsupported file: {os.path.basename(path)}")
|
80 |
|
81 |
message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nNow reason what the doctor might have missed."
|
82 |
|
|
|
88 |
max_token=8192,
|
89 |
call_agent=False,
|
90 |
conversation=conversation,
|
91 |
+
uploaded_files=uploaded_files,
|
92 |
max_round=30
|
93 |
)
|
94 |
for update in generator:
|
95 |
yield update
|
96 |
|
97 |
+
inputs = [message_input, chatbot, conversation_state, file_upload]
|
98 |
+
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
|
99 |
+
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
|
|
|
100 |
|
101 |
+
gr.Examples([
|
102 |
+
["Upload the files"],
|
103 |
+
], inputs=message_input)
|
104 |
|
105 |
return demo
|