File size: 6,315 Bytes
1777737 3a20a5b 728def5 a834285 3a20a5b fb0ec4e 6763f7b d7cd741 588868a 446fbec 841c3cb d7cd741 0e7a2f6 dfe34bb 8505d49 fb0ec4e 6763f7b 588868a a834285 dfe34bb 77de2a0 6763f7b a834285 2737da8 a834285 1794bd1 2737da8 1794bd1 2737da8 a834285 6763f7b a834285 ff7a915 4fb6b01 a834285 ff7a915 a834285 6763f7b dfe34bb a834285 dfe34bb fb0ec4e d6a8733 fb0ec4e d6a8733 3a20a5b fb0ec4e 3a20a5b 774fd26 edb2500 28560cd 7c14cc2 f0b8f72 9086c95 13fb959 dfe34bb 28560cd d6a8733 28560cd d6a8733 a834285 77de2a0 9086c95 15df552 57d92c0 9086c95 f0b8f72 9086c95 88317c7 3a20a5b 57d92c0 88317c7 3a20a5b 28560cd 3ae42d2 3a20a5b 3492c23 77de2a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
# ✅ Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
# ✅ Persist model cache to Hugging Face Space's /data directory
model_cache_dir = "/data/txagent_models"
os.makedirs(model_cache_dir, exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["HF_HOME"] = model_cache_dir
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path):
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
cache_dir = "/data/cache"
os.makedirs(cache_dir, exist_ok=True)
h = file_hash(file_path)
cache_path = os.path.join(cache_dir, f"{h}.json")
if os.path.exists(cache_path):
return open(cache_path, "r", encoding="utf-8").read()
if file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
elif file_type == "pdf":
with pdfplumber.open(file_path) as pdf:
text = "\n".join([page.extract_text() or "" for page in pdf.pages])
result = json.dumps({"filename": os.path.basename(file_path), "content": text.strip()})
open(cache_path, "w", encoding="utf-8").write(result)
return result
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
if df is None or df.empty:
return json.dumps({"warning": f"No data extracted from: {file_path}"})
df = df.fillna("")
content = df.astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
open(cache_path, "w", encoding="utf-8").write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
try:
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Processing your request..."})
yield history
extracted_text = ""
if uploaded_files and isinstance(uploaded_files, list):
for file in uploaded_files:
if not hasattr(file, 'name'):
continue
path = file.name
ext = path.split(".")[-1].lower()
json_text = convert_file_to_json(path, ext)
extracted_text += sanitize_utf8(json_text) + "\n"
# Only final chunk will be passed (no split or loop)
context = (
"You are an expert clinical AI assistant. Review this patient's history, medications, and notes, and ONLY provide a final answer summarizing what the doctor might have missed."
)
chunked_prompt = f"{context}\n\n--- Patient Record ---\n{extracted_text}\n\n[Final Analysis]"
generator = agent.run_gradio_chat(
message=chunked_prompt,
history=[],
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=30
)
final_response = ""
for update in generator:
if update is None:
continue
if isinstance(update, str):
final_response += update
elif isinstance(update, list):
for msg in update:
if hasattr(msg, 'content'):
final_response += msg.content
history[-1] = {"role": "assistant", "content": final_response.strip() or "❌ No response."}
yield history
except Exception as chat_error:
print(f"Chat handling error: {chat_error}")
history[-1] = {"role": "assistant", "content": "❌ An error occurred while processing your request."}
yield history
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might've missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo |