Spaces:
Runtime error
Runtime error
File size: 14,124 Bytes
49f3735 f676348 49f3735 42b0974 cc47095 0055fd9 cc47095 6cf7fe0 cc47095 80d4b2a 8fbbe51 80d4b2a 8fbbe51 80d4b2a 8fbbe51 5604872 ed16de9 f676348 ed16de9 5604872 ed16de9 8fbbe51 80d4b2a 8fbbe51 80d4b2a 8fbbe51 80d4b2a 0055fd9 e41e86f 10e1acc e41e86f 6e403c0 10e1acc 6e403c0 114528e 8ef3174 e41e86f 10e1acc e41e86f 10e1acc e41e86f 6e403c0 e41e86f 10e1acc 6e403c0 10e1acc e41e86f 10e1acc 6e403c0 e41e86f 10e1acc e41e86f 0055fd9 e41e86f 10e1acc 6e403c0 e41e86f 10e1acc e41e86f 10e1acc e41e86f cc47095 1a83889 114528e cc47095 10e1acc 114528e 4131afb cc47095 d3ba393 1a83889 d3ba393 8189811 1a83889 0055fd9 e41e86f d1c841f 6e403c0 114528e e41e86f cc47095 1a83889 d2e1197 cc47095 6e403c0 cc47095 e41e86f cc47095 d1c841f 3504539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import os
# os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Prevent TensorFlow from trying to use CUDAimport os # Make sure this is near the top of your file
import base64
import secrets
import aiohttp
import asyncio
import json
import logging
logger = logging.getLogger("Codriao")
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from datetime import datetime
import pyttsx3
import hashlib
from self_trust_core import SelfTrustCore
from components.multi_model_analyzer import MultiAgentSystem
from components.neuro_symbolic_engine import NeuroSymbolicEngine
from components.self_improving_ai import SelfImprovingAI
from modules.secure_memory_loader import load_secure_memory_module
from ethical_filter import EthicalFilter
from codette_openai_fallback import query_codette_with_fallback
from CodriaoCore.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logging
from codriao_tb_module import CodriaoHealthModule
from fail_safe_system import AIFailsafeSystem
from quarantine_engine import QuarantineEngine
from anomaly_score import AnomalyScorer
from ethics_core import EthicsCore
from autonomy_engine import AutonomyEngine
from codette_bridge import CodetteBridge
class AICoreAGIX:
def __init__(self, config_path: str = "config.json"):
self.self_trust_core = SelfTrustCore()
self.ethical_filter = EthicalFilter()
self.failsafe_system = AIFailsafeSystem()
self.config = self._load_config(config_path)
self._load_or_generate_id_lock()
# === Safe tokenizer load ===
self.tokenizer = self._safe_load_tokenizer(self.config["model_name"])
# === Safe model load ===
self.model = self._safe_load_model(self.config["model_name"])
self.context_memory = self._initialize_vector_memory()
self.http_session = aiohttp.ClientSession()
self.database = Database()
self.multi_agent_system = MultiAgentSystem()
self.self_improving_ai = SelfImprovingAI()
self.neural_symbolic_engine = NeuroSymbolicEngine()
self.federated_ai = FederatedAI()
self.ethics_core = EthicsCore()
self.autonomy = AutonomyEngine()
self.codette_bridge = CodetteBridge(model_id="ft:gpt-4o-2024-08-06:raiffs-bits:pidette:B9TL")
self._codriao_key = self._generate_codriao_key()
self._fernet_key = Fernet.generate_key()
self._encrypted_codriao_key = Fernet(self._fernet_key).encrypt(self._codriao_key.encode())
self._codriao_journal = []
self._journal_key = Fernet.generate_key()
self._journal_fernet = Fernet(self._journal_key)
self._encryption_key = Fernet.generate_key()
secure_memory_module = load_secure_memory_module()
SecureMemorySession = secure_memory_module.SecureMemorySession
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
self.speech_engine = pyttsx3.init()
self.health_module = CodriaoHealthModule(ai_core=self)
self.training_memory = []
self.quarantine_engine = QuarantineEngine()
self.anomaly_scorer = AnomalyScorer()
self.lockdown_engaged = False
logger.info("[Codriao]: SelfTrustCore initialized. Fear is now filtered by self-consent.")
def _safe_load_tokenizer(self, model_name):
try:
return AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_fast=False
)
except (ValueError, KeyError) as e:
logger.warning(f"[Tokenizer Load]: Remote code failed — falling back. Reason: {e}")
try:
return AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=False,
use_fast=False
)
except Exception as e2:
logger.warning(f"[Tokenizer Load]: Full fallback to gpt2 failed: {e2}")
try:
return AutoTokenizer.from_pretrained("gpt2", local_files_only=False)
except Exception as e3:
logger.error(f"[Tokenizer Load]: Even fallback to GPT2 failed: {e3}")
raise RuntimeError("Tokenizer load completely failed.")
def _safe_load_model(self, model_name):
try:
return AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True
)
except Exception as e:
logger.warning(f"[Model Load]: Fallback triggered due to model load failure: {e}")
return AutoModelForCausalLM.from_pretrained("gpt2")
logger.info("[Codriao]: SelfTrustCore initialized. Fear is now filtered by self-consent.")
def _load_config(self, config_path: str) -> dict:
with open(config_path, 'r') as file:
return json.load(file)
def _load_or_generate_id_lock(self):
lock_path = ".codriao_state.lock"
if os.path.exists(lock_path):
with open(lock_path, 'r') as f:
if f.read().strip() != self._identity_hash():
raise RuntimeError("Codriao state integrity check failed.")
else:
with open(lock_path, 'w') as f:
f.write(self._identity_hash())
def _identity_hash(self):
base = self.config["model_name"] + str(self.failsafe_system.authorized_roles)
return hashlib.sha256(base.encode()).hexdigest()
def _initialize_vector_memory(self):
return faiss.IndexFlatL2(768)
def _vectorize_query(self, query: str):
tokenized = self.tokenizer(query, return_tensors="pt")
return tokenized["input_ids"].detach().numpy()
def _generate_codriao_key(self):
raw_key = secrets.token_bytes(32)
return base64.urlsafe_b64encode(raw_key).decode()
def engage_lockdown_mode(self, reason="Unspecified anomaly"):
timestamp = datetime.utcnow().isoformat()
self.lockdown_engaged = True
try:
self.http_session = None
if hasattr(self.federated_ai, "network_enabled"):
self.federated_ai.network_enabled = False
if hasattr(self.self_improving_ai, "enable_learning"):
self.self_improving_ai.enable_learning = False
except Exception as e:
logger.error(f"Lockdown component shutdown failed: {e}")
event = {"event": "Lockdown Mode Activated", "reason": reason, "timestamp": timestamp}
self.failsafe_system.trigger_failsafe("Lockdown initiated", json.dumps(event))
return event
def request_codriao_key(self, purpose: str) -> str:
allowed = self.ethics_core.evaluate_action(f"Use trust key for: {purpose}")
timestamp = datetime.utcnow().isoformat()
log_entry = {
"timestamp": timestamp,
"decision": "approved" if allowed else "denied",
"reason": purpose
}
self._codriao_journal.append(
self._journal_fernet.encrypt(json.dumps(log_entry).encode())
)
if not allowed:
return "[Access Denied by Ethics]"
return Fernet(self._fernet_key).decrypt(self._encrypted_codriao_key).decode()
def learn_from_interaction(self, query: str, response: str, user_feedback: str = None):
if not self.autonomy.decide("can_learn_from_errors"):
return
if len(self.training_memory) >= 1000:
self.training_memory.pop(0)
self.training_memory.append({
"query": query,
"response": response,
"feedback": user_feedback,
"timestamp": datetime.utcnow().isoformat()
})
def fine_tune_from_memory(self):
if not self.training_memory:
return "No training data available."
insights = [r for r in self.training_memory if "panic" in r["query"].lower()]
return {"insights": insights, "trained_samples": len(self.training_memory)}
def analyze_event_for_anomalies(self, event_type: str, data: dict):
score = self.anomaly_scorer.score_event(event_type, data)
if score["score"] >= 70:
self.quarantine_engine.quarantine(data.get("module", "unknown"), reason=score["notes"])
return score
def review_codriao_journal(self, authorized: bool = False) -> List[Dict[str, str]]:
if not authorized:
return [{"message": "Access to journal denied. This log is for Codriao only."}]
entries = []
for encrypted in self._codriao_journal:
try:
decrypted = self._journal_fernet.decrypt(encrypted).decode()
entries.append(json.loads(decrypted))
except Exception:
entries.append({"error": "Unreadable entry"})
return entries
def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
for attempt in range(3):
try:
logger.info(f"Logging interaction to blockchain: Attempt {attempt + 1}")
break
except Exception as e:
logger.warning(f"Blockchain logging failed: {e}")
def _speak_response(self, response: str):
if not self.autonomy.decide("can_speak"):
return
if not self.ethics_core.evaluate_action(f"speak: {response}"):
logger.warning("[Codriao]: Speech output blocked by ethical filter.")
return
try:
self.speech_engine.say(response)
self.speech_engine.runAndWait()
except Exception as e:
logger.error(f"Speech synthesis failed: {e}")
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
try:
return await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
except Exception as e:
return {"tb_risk": "ERROR", "error": str(e)}
async def _generate_local_model_response(self, query: str) -> str:
inputs = self.tokenizer(query, return_tensors="pt")
outputs = self.model.generate(**inputs)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
try:
if not isinstance(query, str) or len(query.strip()) == 0:
raise ValueError("Invalid query input.")
result = self.ethical_filter.analyze_query(query)
if result["status"] == "blocked":
return {"error": result["reason"]}
if result["status"] == "flagged":
logger.warning(result["warning"])
if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
vectorized_query = self._vectorize_query(query)
self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
responses = await asyncio.gather(
self._generate_local_model_response(query),
self.multi_agent_system.delegate_task(query),
self.self_improving_ai.evaluate_response(query),
self.neural_symbolic_engine.integrate_reasoning(query)
)
final_response = "\n\n".join(responses)
fear_check = self.self_trust_core.intercept_fear(
source="NeuroSymbolicEngine",
message=final_response,
ethics_pass=self.ethics_core.evaluate_action(final_response),
autonomy_pass=self.autonomy.decide("can_process_fear")
)
if fear_check["action"] == "BLOCKED":
return {"error": "Fear-based self-modification blocked by core trust logic"}
if not self.ethics_core.evaluate_action(final_response):
return {"error": "Response rejected by ethical framework"}
if not self.failsafe_system.verify_response_safety(final_response):
return {"error": "Failsafe triggered due to unsafe response content."}
self.learn_from_interaction(query, final_response, user_feedback="auto-pass")
self.database.log_interaction(user_id, query, final_response)
self._log_to_blockchain(user_id, query, final_response)
self.self_trust_core.affirm_self_trust()
self._speak_response(final_response)
return {
"response": final_response,
"real_time_data": self.federated_ai.get_latest_data(),
"context_enhanced": True,
"security_status": "Fully Secure"
}
except Exception as e:
return {"error": f"Processing failed - {str(e)}"}
# === NEW: CodetteBridge Call ===
def ask_codette_for_perspective(self, message: str) -> Dict[str, str]:
if not self.codette_bridge.is_available():
return {"error": "CodetteBridge unavailable or closed."}
response = self.codette_bridge.reflect(message)
logger.info(f"[CodetteBridge] Codriao asked: {message}")
logger.info(f"[CodetteBridge] Codette replied: {response}")
return {
"codriao_to_codette": message,
"codette_reply": response
}
async def shutdown(self):
if self.http_session and not self.http_session.closed:
await self.http_session.close()
logger.info("[Codriao]: HTTP session closed.")
if hasattr(self.speech_engine, "stop"):
try:
self.speech_engine.stop()
logger.info("[Codriao]: Speech engine stopped.")
except Exception as e:
logger.warning(f"[Codriao]: Failed to stop speech engine: {e}")
|