File size: 5,610 Bytes
cc47095
 
 
 
 
 
 
 
 
 
 
 
 
4131afb
eea3a7e
8189811
 
089cff4
4aa9206
12ea30f
418e0c1
8189811
61661f8
8189811
8ee02dc
4131afb
cc47095
418e0c1
cc47095
 
 
 
 
 
418e0c1
cc47095
 
 
3e16173
8189811
cc47095
4131afb
089cff4
418e0c1
089cff4
 
1af5dbd
4131afb
cc47095
4131afb
cc47095
 
 
 
 
 
 
 
 
4131afb
 
 
 
 
 
 
 
 
 
 
cc47095
d3ba393
 
416743d
418e0c1
 
 
 
 
cc47095
d3ba393
 
 
8189811
d3ba393
 
8189811
cc47095
 
 
 
 
 
 
 
 
 
 
 
 
 
4131afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc47095
 
 
 
 
 
 
 
 
 
 
 
 
890492a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import aiohttp
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from jwt import encode, decode, ExpiredSignatureError
from datetime import datetime, timedelta
import speech_recognition as sr
import pyttsx3
import os

from components.multi_model_analyzer import MultiAgentSystem
from components.neuro_symbolic_engine import NeuroSymbolicEngine
from components.self_improving_ai import SelfImprovingAI
from modules.secure_memory_loader import load_secure_memory_module
from ethical_filter import EthicalFilter
from codette_openai_fallback import query_codette_with_fallback  # <<< Fallback-aware

from CodriaoCore.federated_learning import FederatedAI
from utils.database import Database
from utils.logger import logger
from codriao_tb_module import CodriaoHealthModule


class AICoreAGIX:
    def __init__(self, config_path: str = "config.json"):
        self.ethical_filter = EthicalFilter()
        self.config = self._load_config(config_path)
        self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
        self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
        self.context_memory = self._initialize_vector_memory()
        self.http_session = aiohttp.ClientSession()
        self.database = Database()
        self.multi_agent_system = MultiAgentSystem()
        self.self_improving_ai = SelfImprovingAI()
        self.neural_symbolic_engine = NeuroSymbolicEngine()
        self.federated_ai = FederatedAI()

        # Secure memory setup
        self._encryption_key = self.config["security_settings"]["encryption_key"].encode()
        secure_memory_module = load_secure_memory_module()
        SecureMemorySession = secure_memory_module.SecureMemorySession
        self.secure_memory_loader = SecureMemorySession(self._encryption_key)

        self.speech_engine = pyttsx3.init()
        self.health_module = CodriaoHealthModule(ai_core=self)

    async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
        try:
            result = self.ethical_filter.analyze_query(query)
            if result["status"] == "blocked":
                return {"error": result["reason"]}
            if result["status"] == "flagged":
                logger.warning(result["warning"])

            if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]):
                result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
                return {
                    "response": result["ethical_analysis"],
                    "explanation": result["explanation"],
                    "tb_risk": result["tb_risk"],
                    "image_analysis": result["image_analysis"],
                    "audio_analysis": result["audio_analysis"],
                    "system_health": result["system_health"]
                }

            vectorized_query = self._vectorize_query(query)
            self.secure_memory_loader.encrypt_vector(user_id, vectorized_query)
            user_vectors = self.secure_memory_loader.decrypt_vectors(user_id)

            # === Use OpenAI w/ fallback ===
            model_response = query_codette_with_fallback(query, user_id=str(user_id))
            agent_response = self.multi_agent_system.delegate_task(query)
            self_reflection = self.self_improving_ai.evaluate_response(query, model_response)
            neural_reasoning = self.neural_symbolic_engine.integrate_reasoning(query)

            final_response = (
                f"{model_response}\n\n"
                f"{agent_response}\n\n"
                f"{self_reflection}\n\n"
                f"Logic: {neural_reasoning}"
            )

            self.database.log_interaction(user_id, query, final_response)
            self._speak_response(final_response)

            return {
                "response": final_response,
                "real_time_data": self.federated_ai.get_latest_data(),
                "context_enhanced": True,
                "security_status": "Fully Secure"
            }

        except Exception as e:
            logger.error(f"Response generation failed: {e}")
            return {"error": "Processing failed - safety protocols engaged"}

    async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]:
        try:
            result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
            logger.info(f"TB Diagnostic Result: {result}")
            return result
        except Exception as e:
            logger.error(f"TB diagnostics failed: {e}")
            return {
                "tb_risk": "ERROR",
                "error": str(e),
                "image_analysis": {},
                "audio_analysis": {},
                "ethical_analysis": "Unable to complete TB diagnostic.",
                "explanation": None,
                "system_health": None
            }

    def _load_config(self, config_path: str) -> dict:
        with open(config_path, 'r') as file:
            return json.load(file)

    def _initialize_vector_memory(self):
        return faiss.IndexFlatL2(768)

    def _vectorize_query(self, query: str):
        tokenized = self.tokenizer(query, return_tensors="pt")
        return tokenized["input_ids"].detach().numpy()

    def _speak_response(self, response: str):
        self.speech_engine.say(response)
        self.speech_engine.runAndWait()