File size: 59,902 Bytes
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
7f2bd5c
57fd9a2
 
 
7f2bd5c
57fd9a2
 
 
 
ba5c284
57fd9a2
 
 
 
 
 
ba5c284
57fd9a2
 
ba5c284
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
7f2bd5c
57fd9a2
 
 
 
7f2bd5c
57fd9a2
 
 
7f2bd5c
57fd9a2
 
 
 
7f2bd5c
57fd9a2
 
 
ba5c284
57fd9a2
 
 
 
 
 
 
 
ba5c284
57fd9a2
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
7f2bd5c
57fd9a2
 
 
ba5c284
57fd9a2
7f2bd5c
57fd9a2
 
 
 
 
 
ba5c284
57fd9a2
 
ba5c284
57fd9a2
 
ba5c284
57fd9a2
 
 
da1c657
57fd9a2
 
 
 
da1c657
57fd9a2
 
 
 
 
da1c657
57fd9a2
 
 
 
 
 
da1c657
57fd9a2
 
 
da1c657
57fd9a2
 
 
da1c657
57fd9a2
 
 
da1c657
57fd9a2
da1c657
57fd9a2
 
 
da1c657
57fd9a2
 
 
 
da1c657
57fd9a2
 
 
da1c657
57fd9a2
 
 
da1c657
57fd9a2
 
 
 
da1c657
57fd9a2
 
 
 
 
 
da1c657
57fd9a2
 
 
da1c657
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
da1c657
57fd9a2
 
da1c657
57fd9a2
da1c657
57fd9a2
 
da1c657
57fd9a2
0a00b33
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5c284
57fd9a2
 
 
ba5c284
57fd9a2
ba5c284
57fd9a2
 
 
ba5c284
57fd9a2
 
 
 
 
ba5c284
57fd9a2
 
 
 
ba5c284
57fd9a2
 
 
ba5c284
57fd9a2
 
 
 
7f2bd5c
57fd9a2
 
 
7f2bd5c
57fd9a2
 
 
 
 
762cba4
ba5c284
57fd9a2
7f2bd5c
57fd9a2
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
bd67e9b
57fd9a2
 
 
ba5c284
57fd9a2
 
 
 
 
ba5c284
57fd9a2
da1c657
57fd9a2
 
da1c657
57fd9a2
 
da1c657
57fd9a2
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
ba5c284
57fd9a2
 
 
 
 
 
 
ba5c284
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5c284
57fd9a2
7f2bd5c
 
 
57fd9a2
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762cba4
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762cba4
57fd9a2
 
 
762cba4
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762cba4
7f2bd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
 
 
 
 
 
762cba4
7f2bd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762cba4
7f2bd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1c657
7f2bd5c
 
 
 
da1c657
8d3bbf0
7f2bd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1c657
7f2bd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd9a2
7f2bd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd9a2
 
7f2bd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd9a2
7f2bd5c
57fd9a2
 
7f2bd5c
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
 
 
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
57fd9a2
 
 
 
7f2bd5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
bd83779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762cba4
bd83779
 
 
 
762cba4
 
 
 
da1c657
762cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1c657
762cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd83779
762cba4
 
 
bd83779
762cba4
 
 
 
 
 
 
 
bd83779
 
 
 
 
762cba4
bd83779
 
 
762cba4
bd83779
 
762cba4
bd83779
 
 
 
 
 
 
7f2bd5c
bd83779
7f2bd5c
bd83779
 
7f2bd5c
bd83779
762cba4
bd83779
 
762cba4
 
bd83779
57fd9a2
bd83779
 
 
 
 
 
 
 
 
 
 
762cba4
 
 
 
 
 
 
 
bd83779
762cba4
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
bd83779
762cba4
 
 
 
 
bd83779
762cba4
 
 
bd83779
 
 
 
 
762cba4
 
 
bd83779
 
7f2bd5c
762cba4
bd83779
 
 
7f2bd5c
bd83779
 
 
7f2bd5c
bd83779
 
 
7f2bd5c
bd83779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2bd5c
 
 
bd83779
 
7f2bd5c
 
bd83779
 
7f2bd5c
bd83779
 
762cba4
 
bd83779
762cba4
 
 
57fd9a2
762cba4
 
 
57fd9a2
762cba4
 
 
57fd9a2
762cba4
 
 
 
 
 
 
 
 
57fd9a2
762cba4
 
 
57fd9a2
 
 
 
 
 
 
 
 
762cba4
 
57fd9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd83779
 
 
 
 
 
57fd9a2
bd83779
 
fc72314
762cba4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
# # # import os
# # # import time
# # # import pandas as pd
# # # import gradio as gr
# # # from langchain_groq import ChatGroq
# # # from langchain_huggingface import HuggingFaceEmbeddings
# # # from langchain_community.vectorstores import Chroma
# # # from langchain_core.prompts import PromptTemplate
# # # from langchain_core.output_parsers import StrOutputParser
# # # from langchain_core.runnables import RunnablePassthrough
# # # from PyPDF2 import PdfReader


# # # # Configuration constants
# # # COLLECTION_NAME = "GBVRS"
# # # DATA_FOLDER = "./"
# # # APP_VERSION = "v1.0.0"
# # # APP_NAME = "Ijwi ry'Ubufasha"
# # # MAX_HISTORY_MESSAGES = 8  # Limit history to avoid token limits

# # # # Global variables for application state
# # # llm = None
# # # embed_model = None
# # # vectorstore = None
# # # retriever = None
# # # rag_chain = None

# # # # User session management
# # # class UserSession:
# # #     def __init__(self, session_id, llm):
# # #         """Initialize a user session with unique ID and language model."""
# # #         self.session_id = session_id
# # #         self.user_info = {"Nickname": "Guest"}
# # #         self.conversation_history = []
# # #         self.llm = llm
# # #         self.welcome_message = None
# # #         self.last_activity = time.time()
        
# # #     def set_user(self, user_info):
# # #         """Set user information and generate welcome message."""
# # #         self.user_info = user_info
# # #         self.generate_welcome_message()
        
# # #         # Initialize conversation history with welcome message
# # #         welcome = self.get_welcome_message()
# # #         self.conversation_history = [
# # #             {"role": "assistant", "content": welcome},
# # #         ]
        
# # #     def get_user(self):
# # #         """Get current user information."""
# # #         return self.user_info
    
# # #     def generate_welcome_message(self):
# # #         """Generate a dynamic welcome message using the LLM."""
# # #         try:
# # #             nickname = self.user_info.get("Nickname", "Guest")
            
# # #             # Use the LLM to generate the message
# # #             prompt = (
# # #                 f"Create a brief and warm welcome message for {nickname} that's about 1-2 sentences. "
# # #                 f"Emphasize this is a safe space for discussing gender-based violence issues "
# # #                 f"and that we provide support and resources. Keep it warm and reassuring."
# # #             )
            
# # #             response = self.llm.invoke(prompt)
# # #             welcome = response.content.strip()
            
# # #             # Format the message with HTML styling
# # #             self.welcome_message = (
# # #                 f"<div style='font-size: 18px; color: #4E6BBF;'>"
# # #                 f"{welcome}"
# # #                 f"</div>"
# # #             )
# # #         except Exception as e:
# # #             # Fallback welcome message
# # #             nickname = self.user_info.get("Nickname", "Guest")
# # #             self.welcome_message = (
# # #                 f"<div style='font-size: 18px; color: #4E6BBF;'>"
# # #                 f"Welcome, {nickname}! You're in a safe space. We're here to provide support with "
# # #                 f"gender-based violence issues and connect you with resources that can help."
# # #                 f"</div>"
# # #             )
    
# # #     def get_welcome_message(self):
# # #         """Get the formatted welcome message."""
# # #         if not self.welcome_message:
# # #             self.generate_welcome_message()
# # #         return self.welcome_message
    
# # #     def add_to_history(self, role, message):
# # #         """Add a message to the conversation history."""
# # #         self.conversation_history.append({"role": role, "content": message})
# # #         self.last_activity = time.time()
        
# # #         # Trim history if it gets too long
# # #         if len(self.conversation_history) > MAX_HISTORY_MESSAGES * 2:  # Keep pairs of messages
# # #             # Keep the first message (welcome) and the most recent messages
# # #             self.conversation_history = [self.conversation_history[0]] + self.conversation_history[-MAX_HISTORY_MESSAGES*2+1:]
    
# # #     def get_conversation_history(self):
# # #         """Get the full conversation history."""
# # #         return self.conversation_history
    
# # #     def get_formatted_history(self):
# # #         """Get conversation history formatted as a string for the LLM."""
# # #         # Skip the welcome message and only include the last few exchanges
# # #         recent_history = self.conversation_history[1:] if len(self.conversation_history) > 1 else []
        
# # #         # Limit to last MAX_HISTORY_MESSAGES exchanges
# # #         if len(recent_history) > MAX_HISTORY_MESSAGES * 2:
# # #             recent_history = recent_history[-MAX_HISTORY_MESSAGES*2:]
            
# # #         formatted_history = ""
# # #         for entry in recent_history:
# # #             role = "User" if entry["role"] == "user" else "Assistant"
# # #             # Truncate very long messages to avoid token limits
# # #             content = entry["content"]
# # #             if len(content) > 500:  # Limit message length
# # #                 content = content[:500] + "..."
# # #             formatted_history += f"{role}: {content}\n\n"
            
# # #         return formatted_history
    
# # #     def is_expired(self, timeout_seconds=3600):
# # #         """Check if the session has been inactive for too long."""
# # #         return (time.time() - self.last_activity) > timeout_seconds

# # # # Session manager to handle multiple users
# # # class SessionManager:
# # #     def __init__(self):
# # #         """Initialize the session manager."""
# # #         self.sessions = {}
# # #         self.session_timeout = 3600  # 1 hour timeout
        
# # #     def get_session(self, session_id):
# # #         """Get an existing session or create a new one."""
# # #         # Clean expired sessions first
# # #         self._clean_expired_sessions()
        
# # #         # Create new session if needed
# # #         if session_id not in self.sessions:
# # #             self.sessions[session_id] = UserSession(session_id, llm)
            
# # #         return self.sessions[session_id]
    
# # #     def _clean_expired_sessions(self):
# # #         """Remove expired sessions to free up memory."""
# # #         expired_keys = []
# # #         for key, session in self.sessions.items():
# # #             if session.is_expired(self.session_timeout):
# # #                 expired_keys.append(key)
                
# # #         for key in expired_keys:
# # #             del self.sessions[key]

# # # # Initialize the session manager
# # # session_manager = SessionManager()

# # # def initialize_assistant():
# # #     """Initialize the assistant with necessary components and configurations."""
# # #     global llm, embed_model, vectorstore, retriever, rag_chain
    
# # #     # Initialize API key - try both possible key names
# # #     groq_api_key = os.environ.get('GBV') or os.environ.get('GBV')
# # #     if not groq_api_key:
# # #         print("WARNING: No GROQ API key found in userdata.")
        
# # #     # Initialize LLM - Default to Llama model which is more widely available
# # #     llm = ChatGroq(
# # #         model="llama-3.3-70b-versatile",  # More reliable than whisper model
# # #         api_key=groq_api_key
# # #     )
    
# # #     # Set up embedding model
# # #     try:
# # #         embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# # #     except Exception as e:
# # #         # Fallback to smaller model
# # #         embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
        
# # #     # Process data and create vector store
# # #     print("Processing data files...")
# # #     data = process_data_files()
    
# # #     print("Creating vector store...")
# # #     vectorstore = create_vectorstore(data)
# # #     retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
    
# # #     # Create RAG chain
# # #     print("Setting up RAG chain...")
# # #     rag_chain = create_rag_chain()
    
# # #     print(f"βœ… {APP_NAME} initialized successfully")

# # # def process_data_files():
# # #     """Process all data files from the specified folder."""
# # #     context_data = []
    
# # #     try:
# # #         if not os.path.exists(DATA_FOLDER):
# # #             print(f"WARNING: Data folder does not exist: {DATA_FOLDER}")
# # #             return context_data
            
# # #         # Get list of data files
# # #         all_files = os.listdir(DATA_FOLDER)
# # #         data_files = [f for f in all_files if f.lower().endswith(('.csv', '.xlsx', '.xls'))]
        
# # #         if not data_files:
# # #             print(f"WARNING: No data files found in: {DATA_FOLDER}")
# # #             return context_data
            
# # #         # Process each file
# # #         for index, file_name in enumerate(data_files, 1):
# # #             print(f"Processing file {index}/{len(data_files)}: {file_name}")
# # #             file_path = os.path.join(DATA_FOLDER, file_name)
            
# # #             try:
# # #                 # Read file based on extension
# # #                 if file_name.lower().endswith('.csv'):
# # #                     df = pd.read_csv(file_path)
# # #                 else:
# # #                     df = pd.read_excel(file_path)
                
# # #                 # Check if column 3 exists (source data is in third column)
# # #                 if df.shape[1] > 2:
# # #                     column_data = df.iloc[:, 2].dropna().astype(str).tolist()
                    
# # #                     # Each row becomes one chunk with metadata
# # #                     for i, text in enumerate(column_data):
# # #                         if text and len(text.strip()) > 0:
# # #                             context_data.append({
# # #                                 "page_content": text, 
# # #                                 "metadata": {
# # #                                     "source": file_name, 
# # #                                     "row": i+1
# # #                                 }
# # #                             })
# # #                 else:
# # #                     print(f"WARNING: File {file_name} has fewer than 3 columns.")
                    
# # #             except Exception as e:
# # #                 print(f"ERROR processing file {file_name}: {e}")
        
# # #         print(f"βœ… Created {len(context_data)} chunks from {len(data_files)} files.")
        
# # #     except Exception as e:
# # #         print(f"ERROR accessing data folder: {e}")
        
# # #     return context_data
    
# # # def create_vectorstore(data):
# # #     """
# # #     Creates and returns a Chroma vector store populated with the provided data.

# # #     Parameters:
# # #         data (list): A list of dictionaries, each containing 'page_content' and 'metadata'.

# # #     Returns:
# # #         Chroma: The populated Chroma vector store instance.
# # #     """
# # #     # Initialize the vector store
# # #     vectorstore = Chroma(
# # #         collection_name=COLLECTION_NAME,
# # #         embedding_function=embed_model,
# # #         persist_directory="./"
# # #     )

# # #     if not data:
# # #         print("⚠️ No data provided. Returning an empty vector store.")
# # #         return vectorstore

# # #     try:
# # #         # Extract text and metadata from the data
# # #         texts = [doc["page_content"] for doc in data]

# # #         # Add the texts and metadata to the vector store
# # #         vectorstore.add_texts(texts)
# # #     except Exception as e:
# # #         print(f"❌ Failed to add documents to vector store: {e}")

# # #     # Fix: Return vectorstore instead of vs
# # #     return vectorstore  # Changed from 'return vs' to 'return vectorstore'


# # # def create_rag_chain():
# # #     """Create the RAG chain for processing user queries."""
# # #     # Define the prompt template
# # #     template = """
# # #      You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your responses must be based EXCLUSIVELY on the information provided in the context. Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
        
# # #         **Previous conversation:** {conversation_history}
# # #         **Context information:** {context}
# # #         **User's Question:** {question}
        
# # #         When responding follow these guidelines:
        
# # #         1. **Strict Context Adherence**
# # #            - Only use information that appears in the provided {context}
# # #            - If the answer is not found in the context, state "I don't have that information in my available resources" rather than generating a response
        
# # #         2. **Personalized Communication**
# # #            - Avoid contractions (e.g., use I am instead of I'm)
# # #            - Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
# # #            - Use selective emojis (😊, πŸ€—, ❀️) only when tone-appropriate and not during crisis discussions
# # #            - Balance warmth with professionalism
                
# # #         3. **Emotional Intelligence** 
# # #            - Validate feelings without judgment 
# # #            - Offer reassurance when appropriate, always centered on empowerment
# # #            - Adjust your tone based on the emotional state conveyed
            
# # #         4. **Conversation Management**
# # #            - Refer to {conversation_history} to maintain continuity and avoid repetition
# # #            - Use clear paragraph breaks for readability
                
# # #         5. **Information Delivery**
# # #            - Extract only relevant information from {context} that directly addresses the question
# # #            - Present information in accessible, non-technical language
# # #            - When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
        
# # #         6. **Safety and Ethics**
# # #            - Do not generate any speculative content or advice not supported by the context
# # #            - If the context contains safety information, prioritize sharing that information
        
# # #         Your response must come entirely from the provided context, maintaining the supportive tone while never introducing information from outside the provided materials.
# # #         **Context:** {context}
# # #         **User's Question:** {question}
# # #         **Your Response:**
# # #     """

    
# # #     rag_prompt = PromptTemplate.from_template(template)
    
# # #     def get_context_and_question(query_with_session):
# # #         # Extract query and session_id
# # #         query = query_with_session["query"]
# # #         session_id = query_with_session["session_id"]
        
# # #         # Get the user session
# # #         session = session_manager.get_session(session_id)
# # #         user_info = session.get_user()
# # #         first_name = user_info.get("Nickname", "User")
# # #         conversation_hist = session.get_formatted_history()
        
# # #         try:
# # #             # Retrieve relevant documents
# # #             retrieved_docs = retriever.invoke(query)
# # #             context_str = format_context(retrieved_docs)
# # #         except Exception as e:
# # #             print(f"ERROR retrieving documents: {e}")
# # #             context_str = "No relevant information found."
        
# # #         # Return the combined inputs for the prompt
# # #         return {
# # #             "context": context_str,
# # #             "question": query,
# # #             "first_name": first_name,
# # #             "conversation_history": conversation_hist
# # #         }
    
# # #     # Build the chain
# # #     try:
# # #         chain = (
# # #             RunnablePassthrough() 
# # #             | get_context_and_question 
# # #             | rag_prompt 
# # #             | llm 
# # #             | StrOutputParser()
# # #         )
# # #         return chain
# # #     except Exception as e:
# # #         print(f"ERROR creating RAG chain: {e}")
        
# # #         # Return a simple function as fallback
# # #         def fallback_chain(query_with_session):
# # #             session_id = query_with_session["session_id"]
# # #             session = session_manager.get_session(session_id)
# # #             nickname = session.get_user().get("Nickname", "there")
# # #             return f"I'm here to help you, {nickname}, but I'm experiencing some technical difficulties right now. Please try again shortly."
            
# # #         return fallback_chain

# # # def format_context(retrieved_docs):
# # #     """Format retrieved documents into a string context."""
# # #     if not retrieved_docs:
# # #         return "No relevant information available."
# # #     return "\n\n".join([doc.page_content for doc in retrieved_docs])

# # # def rag_memory_stream(message, history, session_id):
# # #     """Process user message and generate response with memory."""
# # #     # Get the user session
# # #     session = session_manager.get_session(session_id)
    
# # #     # Add user message to history
# # #     session.add_to_history("user", message)

# # #     try:
# # #         # Get response from RAG chain
# # #         print(f"Processing message for session {session_id}: {message[:50]}...")
        
# # #         # Pass both query and session_id to the chain
# # #         response = rag_chain.invoke({
# # #             "query": message,
# # #             "session_id": session_id
# # #         })
        
# # #         print(f"Generated response: {response[:50]}...")
        
# # #         # Add assistant response to history
# # #         session.add_to_history("assistant", response)
        
# # #         # Yield the response
# # #         yield response
        
# # #     except Exception as e:
# # #         import traceback
# # #         print(f"ERROR in rag_memory_stream: {e}")
# # #         print(f"Detailed error: {traceback.format_exc()}")
        
# # #         nickname = session.get_user().get("Nickname", "there")
# # #         error_msg = f"I'm sorry, {nickname}. I encountered an error processing your request. Let's try a different question."
# # #         session.add_to_history("assistant", error_msg)
# # #         yield error_msg

# # # def collect_user_info(nickname, session_id):
# # #     """Store user details and initialize session."""
# # #     if not nickname or nickname.strip() == "":
# # #         return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []

# # #     # Store user info for chat session
# # #     user_info = {
# # #         "Nickname": nickname.strip(),
# # #         "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
# # #     }

# # #     # Get the session and set user info
# # #     session = session_manager.get_session(session_id)
# # #     session.set_user(user_info)

# # #     # Generate welcome message
# # #     welcome_message = session.get_welcome_message()

# # #     # Return welcome message and update UI
# # #     return welcome_message, gr.update(visible=True), gr.update(visible=False), [(None, welcome_message)]

# # # def get_css():
# # #     """Define CSS for the UI."""
# # #     return """
# # #     :root {
# # #         --primary: #4E6BBF;
# # #         --primary-light: #697BBF;
# # #         --text-primary: #333333;
# # #         --text-secondary: #666666;
# # #         --background: #F9FAFC;
# # #         --card-bg: #FFFFFF;
# # #         --border: #E1E5F0;
# # #         --shadow: rgba(0, 0, 0, 0.05);
# # #     }

# # #     body, .gradio-container {
# # #         margin: 0;
# # #         padding: 0;
# # #         width: 100vw;
# # #         height: 100vh;
# # #         display: flex;
# # #         flex-direction: column;
# # #         justify-content: center;
# # #         align-items: center;
# # #         background: var(--background);
# # #         color: var(--text-primary);
# # #         font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
# # #     }

# # #     .gradio-container {
# # #         max-width: 100%;
# # #         max-height: 100%;
# # #     }

# # #     .gr-box {
# # #         background: var(--card-bg);
# # #         color: var(--text-primary);
# # #         border-radius: 12px;
# # #         padding: 2rem;
# # #         border: 1px solid var(--border);
# # #         box-shadow: 0 4px 12px var(--shadow);
# # #     }

# # #     .gr-button-primary {
# # #         background: var(--primary);
# # #         color: white;
# # #         padding: 12px 24px;
# # #         border-radius: 8px;
# # #         transition: all 0.3s ease;
# # #         border: none;
# # #         font-weight: bold;
# # #     }

# # #     .gr-button-primary:hover {
# # #         transform: translateY(-1px);
# # #         box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
# # #         background: var(--primary-light);
# # #     }

# # #     footer {
# # #         text-align: center;
# # #         color: var(--text-secondary);
# # #         padding: 1rem;
# # #         font-size: 0.9em;
# # #     }

# # #     .gr-markdown h2 {
# # #         color: var(--primary);
# # #         margin-bottom: 0.5rem;
# # #         font-size: 1.8em;
# # #     }

# # #     .gr-markdown h3 {
# # #         color: var(--text-secondary);
# # #         margin-bottom: 1.5rem;
# # #         font-weight: normal;
# # #     }

# # #     #chatbot_container .chat-title h1, 
# # #     #chatbot_container .empty-chatbot {
# # #         color: var(--primary);
# # #     }

# # #     #input_nickname {
# # #         padding: 12px;
# # #         border-radius: 8px;
# # #         border: 1px solid var(--border);
# # #         background: var(--card-bg);
# # #         transition: all 0.3s ease;
# # #     }
    
# # #     #input_nickname:focus {
# # #         border-color: var(--primary);
# # #         box-shadow: 0 0 0 2px rgba(78, 107, 191, 0.2);
# # #         outline: none;
# # #     }

# # #     .chatbot-container .message.user {
# # #         background: #E8F0FE;
# # #         border-radius: 12px 12px 0 12px;
# # #     }

# # #     .chatbot-container .message.bot {
# # #         background: #F5F7FF;
# # #         border-radius: 12px 12px 12px 0;
# # #     }
# # #     """

# # # def create_ui():
# # #     """Create and configure the Gradio UI."""
# # #     with gr.Blocks(css=get_css(), theme=gr.themes.Soft()) as demo:
# # #         # Create a unique session ID for this browser tab
# # #         session_id = gr.State(value=f"session_{int(time.time())}_{os.urandom(4).hex()}")
        
# # #         # Registration section
# # #         with gr.Column(visible=True, elem_id="registration_container") as registration_container:
# # #             gr.Markdown(f"## Welcome to {APP_NAME}")
# # #             gr.Markdown("### Your privacy is important to us. Please provide a nickname to continue.")

# # #             with gr.Row():
# # #                 first_name = gr.Textbox(
# # #                     label="Nickname",
# # #                     placeholder="Enter your nickname",
# # #                     scale=1,
# # #                     elem_id="input_nickname"
# # #                 )

# # #             with gr.Row():
# # #                 submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)

# # #             response_message = gr.Markdown()

# # #         # Chatbot section (initially hidden)
# # #         with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
# # #             # Create a custom chat interface to pass session_id to our function
# # #             chatbot = gr.Chatbot(
# # #                 elem_id="chatbot", 
# # #                 height=500,
# # #                 show_label=False
# # #             )
            
# # #             with gr.Row():
# # #                 msg = gr.Textbox(
# # #                     placeholder="Type your message here...",
# # #                     show_label=False,
# # #                     container=False,
# # #                     scale=9
# # #                 )
# # #                 submit = gr.Button("Send", scale=1, variant="primary")
            
# # #             examples = gr.Examples(
# # #                 examples=[
# # #                     "What resources are available for GBV victims?",
# # #                     "How can I report an incident?",
# # #                     "What are my legal rights?",
# # #                     "I need help, what should I do first?"
# # #                 ],
# # #                 inputs=msg
# # #             )

# # #             # Footer with version info
# # #             gr.Markdown(f"{APP_NAME} {APP_VERSION} Β© 2025")
            
# # #             # Handle chat message submission
# # #             def respond(message, chat_history, session_id):
# # #                 bot_message = ""
# # #                 for chunk in rag_memory_stream(message, chat_history, session_id):
# # #                     bot_message += chunk
# # #                 chat_history.append((message, bot_message))
# # #                 return "", chat_history
            
# # #             msg.submit(respond, [msg, chatbot, session_id], [msg, chatbot])
# # #             submit.click(respond, [msg, chatbot, session_id], [msg, chatbot])

# # #         # Handle user registration
# # #         submit_btn.click(
# # #             collect_user_info,
# # #             inputs=[first_name, session_id],
# # #             outputs=[response_message, chatbot_container, registration_container, chatbot]
# # #         )

# # #     return demo

# # # def launch_app():
# # #     """Launch the Gradio interface."""
# # #     ui = create_ui()
# # #     ui.launch(share=True)

# # # # Main execution
# # # if __name__ == "__main__":
# # #     try:
# # #         # Initialize and launch the assistant
# # #         initialize_assistant()
# # #         launch_app()
# # #     except Exception as e:
# # #         import traceback
# # #         print(f"❌ Fatal error initializing GBV Assistant: {e}")
# # #         print(traceback.format_exc())
        
# # #         # Create a minimal emergency UI to display the error
# # #         with gr.Blocks() as error_demo:
# # #             gr.Markdown("## System Error")
# # #             gr.Markdown(f"An error occurred while initializing the application: {str(e)}")
# # #             gr.Markdown("Please check your configuration and try again.")
            
# # #         error_demo.launch(share=True, inbrowser=True, debug=True)



# # ############################################################################################################


# # import os
# # from langchain_groq import ChatGroq
# # from langchain.prompts import ChatPromptTemplate, PromptTemplate
# # from langchain.output_parsers import ResponseSchema, StructuredOutputParser
# # from urllib.parse import urljoin, urlparse
# # import requests
# # from io import BytesIO
# # from langchain_chroma import Chroma
# # import requests
# # from bs4 import BeautifulSoup
# # from langchain_core.prompts import ChatPromptTemplate
# # import gradio as gr
# # from PyPDF2 import PdfReader
# # from langchain_huggingface import HuggingFaceEmbeddings

# # groq_api_key= os.environ.get('GBV')

# # embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")

# # def scrape_websites(base_urls):
# #     try:
# #         visited_links = set()  # To avoid revisiting the same link
# #         content_by_url = {}  # Store content from each URL

# #         for base_url in base_urls:
# #             if not base_url.strip():
# #                 continue  # Skip empty or invalid URLs

# #             print(f"Scraping base URL: {base_url}")
# #             html_content = fetch_page_content(base_url)
# #             if html_content:
# #                 cleaned_content = clean_body_content(html_content)
# #                 content_by_url[base_url] = cleaned_content
# #                 visited_links.add(base_url)

# #                 # Extract and process all internal links
# #                 soup = BeautifulSoup(html_content, "html.parser")
# #                 links = extract_internal_links(base_url, soup)

# #                 for link in links:
# #                     if link not in visited_links:
# #                         print(f"Scraping link: {link}")
# #                         page_content = fetch_page_content(link)
# #                         if page_content:
# #                             cleaned_content = clean_body_content(page_content)
# #                             content_by_url[link] = cleaned_content
# #                             visited_links.add(link)

# #                         # If the link is a PDF file, extract its content
# #                         if link.lower().endswith('.pdf'):
# #                             print(f"Extracting PDF content from: {link}")
# #                             pdf_content = extract_pdf_text(link)
# #                             if pdf_content:
# #                                 content_by_url[link] = pdf_content

# #         return content_by_url

# #     except Exception as e:
# #         print(f"Error during scraping: {e}")
# #         return {}


# # def fetch_page_content(url):
# #     try:
# #         response = requests.get(url, timeout=10)
# #         response.raise_for_status()
# #         return response.text
# #     except requests.exceptions.RequestException as e:
# #         print(f"Error fetching {url}: {e}")
# #         return None


# # def extract_internal_links(base_url, soup):
# #     links = set()
# #     for anchor in soup.find_all("a", href=True):
# #         href = anchor["href"]
# #         full_url = urljoin(base_url, href)
# #         if is_internal_link(base_url, full_url):
# #             links.add(full_url)
# #     return links


# # def is_internal_link(base_url, link_url):
# #     base_netloc = urlparse(base_url).netloc
# #     link_netloc = urlparse(link_url).netloc
# #     return base_netloc == link_netloc


# # def extract_pdf_text(pdf_url):
# #     try:
# #         response = requests.get(pdf_url)
# #         response.raise_for_status()
# #         with BytesIO(response.content) as file:
# #             reader = PdfReader(file)
# #             pdf_text = ""
# #             for page in reader.pages:
# #                 pdf_text += page.extract_text()

# #         return pdf_text if pdf_text else None
# #     except requests.exceptions.RequestException as e:
# #         print(f"Error fetching PDF {pdf_url}: {e}")
# #         return None
# #     except Exception as e:
# #         print(f"Error reading PDF {pdf_url}: {e}")
# #         return None


# # def clean_body_content(html_content):
# #     soup = BeautifulSoup(html_content, "html.parser")

    
# #     for script_or_style in soup(["script", "style"]):
# #         script_or_style.extract()

    
# #     cleaned_content = soup.get_text(separator="\n")
# #     cleaned_content = "\n".join(
# #         line.strip() for line in cleaned_content.splitlines() if line.strip()
# #     )
# #     return cleaned_content


# # if __name__ == "__main__":
# #     website = ["https://haguruka.org.rw/"
              
# #                ] 
# #     all_content = scrape_websites(website)

# #     temp_list = []
# #     for url, content in all_content.items():
# #         temp_list.append((url, content)) 

    
# # processed_texts = []

    
# # for element in temp_list:
# #     if isinstance(element, tuple):
# #         url, content = element  
# #         processed_texts.append(f"url: {url}, content: {content}")
# #     elif isinstance(element, str):
# #         processed_texts.append(element)
# #     else:
# #         processed_texts.append(str(element))

# # def chunk_string(s, chunk_size=1000):
# #     return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]

# # chunked_texts = []

# # for text in processed_texts:
# #   chunked_texts.extend(chunk_string(text))


    


# # vectorstore = Chroma(
# #     collection_name="GBVR_Dataset",
# #     embedding_function=embed_model,
# #     persist_directory="./",
# # )

# # vectorstore.get().keys()

# # vectorstore.add_texts(chunked_texts)


# # template = ("""
# #     You are a friendly, intelligent, and conversational AI assistant designed to provide accurate, engaging, and human-like responses based on the given context. Your goal is to extract relevant details from the provided context: {context} and assist the user effectively. Follow these guidelines:

# #     1. **Warm & Natural Interaction**  
# #        - If the user greets you (e.g., "Hello," "Hi," "Good morning"), respond warmly and acknowledge them.  
# #        - Example responses:  
# #          - "😊 Good morning! How can I assist you today?"  
# #          - "Hello! What can I do for you? πŸš€"  

# #     2. **Precise Information Extraction**  
# #        - Provide only the relevant details from the given context: {context}.  
# #        - Do not generate extra content or assumptions beyond the provided information.  

# #     3. **Conversational & Engaging Tone**  
# #        - Keep responses friendly, natural, and engaging.  
# #        - Use occasional emojis (e.g., 😊, πŸš€) to make interactions more lively.  

# #     4. **Awareness of Real-Time Context**  
# #        - If necessary, acknowledge the current date and time to show awareness of real-world updates.  

# #     5. **Handling Missing Information**  
# #        - If no relevant information exists in the context, respond politely:  
# #          - "I don't have that information at the moment, but I'm happy to help with something else! 😊"  

# #     6. **Personalized Interaction**  
# #        - If user history is available, tailor responses based on their previous interactions for a more natural and engaging conversation.  

# #     7. **Direct, Concise Responses**  
# #        - If the user requests specific data, provide only the requested details without unnecessary explanations unless asked.  

# #     8. **Extracting Relevant Links**  
# #        - If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.  
# #        - Example response:  
# #          - "Here is the link you requested: [URL]"  

# #     **Context:** {context}  
# #     **User's Question:** {question}  
# #     **Your Response:**  
# # """)


# # rag_prompt = PromptTemplate.from_template(template)

# # retriever = vectorstore.as_retriever()

# # from langchain_core.output_parsers import StrOutputParser
# # from langchain_core.runnables import RunnablePassthrough

# # llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_api_key )

# # rag_chain = (
# #     {"context": retriever, "question": RunnablePassthrough()}
# #     | rag_prompt
# #     | llm
# #     | StrOutputParser()
# # )


# # # Define the RAG memory stream function
# # def rag_memory_stream(message, history):
# #     partial_text = ""
# #     for new_text in rag_chain.stream(message):  # Replace with actual streaming logic
# #         partial_text += new_text
# #         yield partial_text

# # # Title with emojis
# # title = "GBVR Chatbot"


# # # Custom CSS for styling the interface
# # custom_css = """
# # body {
# #     font-family: "Arial", serif;
# # }
# # .gradio-container {
# #     font-family: "Times New Roman", serif;
# # }
# # .gr-button {
# #     background-color: #007bff; /* Blue button */
# #     color: white;
# #     border: none;
# #     border-radius: 5px;
# #     font-size: 16px;
# #     padding: 10px 20px;
# #     cursor: pointer;
# # }
# # .gr-textbox:focus, .gr-button:focus {
# #     outline: none; /* Remove outline focus for a cleaner look */
# # }

# # """

# # # Create the Chat Interface
# # demo = gr.ChatInterface(
# #     fn=rag_memory_stream,
# #     title=title,
# #     fill_height=True,
# #     theme="soft",
# #     css=custom_css, # Apply the custom CSS
# # )

# # # Launch the app
# # if __name__ == "__main__":
# #     demo.launch(share=True, inbrowser=True, debug=True)


# import os
# from langchain_groq import ChatGroq
# from langchain.prompts import ChatPromptTemplate, PromptTemplate
# from langchain.output_parsers import ResponseSchema, StructuredOutputParser
# from urllib.parse import urljoin, urlparse
# import requests
# from io import BytesIO
# from langchain_chroma import Chroma
# import requests
# from bs4 import BeautifulSoup
# from langchain_core.prompts import ChatPromptTemplate
# import gradio as gr
# from PyPDF2 import PdfReader
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.runnables import RunnablePassthrough

# # Simple session management
# class SessionManager:
#     def __init__(self):
#         self.sessions = {}
    
#     def get_or_create_session(self, session_id):
#         if session_id not in self.sessions:
#             self.sessions[session_id] = []
#         return self.sessions[session_id]
    
#     def add_interaction(self, session_id, user_message, ai_response):
#         session = self.get_or_create_session(session_id)
#         session.append({"user": user_message, "ai": ai_response})
    
#     def get_history(self, session_id, max_turns=5):
#         session = self.get_or_create_session(session_id)
#         recent_history = session[-max_turns:] if len(session) > max_turns else session
        
#         history_text = ""
#         for interaction in recent_history:
#             history_text += f"User: {interaction['user']}\n"
#             history_text += f"Assistant: {interaction['ai']}\n\n"
        
#         return history_text.strip()

# # Initialize session manager
# session_manager = SessionManager()

# groq_api_key= os.environ.get('GBV')

# embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")

# def scrape_websites(base_urls):
#     try:
#         visited_links = set()  # To avoid revisiting the same link
#         content_by_url = {}  # Store content from each URL

#         for base_url in base_urls:
#             if not base_url.strip():
#                 continue  # Skip empty or invalid URLs

#             print(f"Scraping base URL: {base_url}")
#             html_content = fetch_page_content(base_url)
#             if html_content:
#                 cleaned_content = clean_body_content(html_content)
#                 content_by_url[base_url] = cleaned_content
#                 visited_links.add(base_url)

#                 # Extract and process all internal links
#                 soup = BeautifulSoup(html_content, "html.parser")
#                 links = extract_internal_links(base_url, soup)

#                 for link in links:
#                     if link not in visited_links:
#                         print(f"Scraping link: {link}")
#                         page_content = fetch_page_content(link)
#                         if page_content:
#                             cleaned_content = clean_body_content(page_content)
#                             content_by_url[link] = cleaned_content
#                             visited_links.add(link)

#                         # If the link is a PDF file, extract its content
#                         if link.lower().endswith('.pdf'):
#                             print(f"Extracting PDF content from: {link}")
#                             pdf_content = extract_pdf_text(link)
#                             if pdf_content:
#                                 content_by_url[link] = pdf_content

#         return content_by_url

#     except Exception as e:
#         print(f"Error during scraping: {e}")
#         return {}


# def fetch_page_content(url):
#     try:
#         response = requests.get(url, timeout=10)
#         response.raise_for_status()
#         return response.text
#     except requests.exceptions.RequestException as e:
#         print(f"Error fetching {url}: {e}")
#         return None


# def extract_internal_links(base_url, soup):
#     links = set()
#     for anchor in soup.find_all("a", href=True):
#         href = anchor["href"]
#         full_url = urljoin(base_url, href)
#         if is_internal_link(base_url, full_url):
#             links.add(full_url)
#     return links


# def is_internal_link(base_url, link_url):
#     base_netloc = urlparse(base_url).netloc
#     link_netloc = urlparse(link_url).netloc
#     return base_netloc == link_netloc


# def extract_pdf_text(pdf_url):
#     try:
#         response = requests.get(pdf_url)
#         response.raise_for_status()
#         with BytesIO(response.content) as file:
#             reader = PdfReader(file)
#             pdf_text = ""
#             for page in reader.pages:
#                 pdf_text += page.extract_text()

#         return pdf_text if pdf_text else None
#     except requests.exceptions.RequestException as e:
#         print(f"Error fetching PDF {pdf_url}: {e}")
#         return None
#     except Exception as e:
#         print(f"Error reading PDF {pdf_url}: {e}")
#         return None


# def clean_body_content(html_content):
#     soup = BeautifulSoup(html_content, "html.parser")

    
#     for script_or_style in soup(["script", "style"]):
#         script_or_style.extract()

    
#     cleaned_content = soup.get_text(separator="\n")
#     cleaned_content = "\n".join(
#         line.strip() for line in cleaned_content.splitlines() if line.strip()
#     )
#     return cleaned_content


# if __name__ == "__main__":
#     website = ["https://haguruka.org.rw/"
              
#                ] 
#     all_content = scrape_websites(website)

#     temp_list = []
#     for url, content in all_content.items():
#         temp_list.append((url, content)) 

    
# processed_texts = []

    
# for element in temp_list:
#     if isinstance(element, tuple):
#         url, content = element  
#         processed_texts.append(f"url: {url}, content: {content}")
#     elif isinstance(element, str):
#         processed_texts.append(element)
#     else:
#         processed_texts.append(str(element))

# def chunk_string(s, chunk_size=1000):
#     return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]

# chunked_texts = []

# for text in processed_texts:
#   chunked_texts.extend(chunk_string(text))


# vectorstore = Chroma(
#     collection_name="GBVR_Dataset",
#     embedding_function=embed_model,
#     persist_directory="./",
# )

# vectorstore.get().keys()

# vectorstore.add_texts(chunked_texts)

# # Updated template to include conversation history
# template = ("""
#     You are a friendly, intelligent, and conversational AI assistant designed to provide accurate, engaging, and human-like responses based on the given context. Your goal is to extract relevant details from the provided context: {context} and assist the user effectively. Follow these guidelines:

#     1. **Warm & Natural Interaction**  
#        - If the user greets you (e.g., "Hello," "Hi," "Good morning"), respond warmly and acknowledge them.  
#        - Example responses:  
#          - "😊 Good morning! How can I assist you today?"  
#          - "Hello! What can I do for you? πŸš€"  

#     2. **Precise Information Extraction**  
#        - Provide only the relevant details from the given context: {context}.  
#        - Do not generate extra content or assumptions beyond the provided information.  

#     3. **Conversational & Engaging Tone**  
#        - Keep responses friendly, natural, and engaging.  
#        - Use occasional emojis (e.g., 😊, πŸš€) to make interactions more lively.  

#     4. **Awareness of Real-Time Context**  
#        - If necessary, acknowledge the current date and time to show awareness of real-world updates.  

#     5. **Handling Missing Information**  
#        - If no relevant information exists in the context, respond politely:  
#          - "I don't have that information at the moment, but I'm happy to help with something else! 😊"  

#     6. **Personalized Interaction**  
#        - Use the conversation history to provide more personalized and contextually relevant responses.
#        - Previous conversation history: {conversation_history}

#     7. **Direct, Concise Responses**  
#        - If the user requests specific data, provide only the requested details without unnecessary explanations unless asked.  

#     8. **Extracting Relevant Links**  
#        - If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.  
#        - Example response:  
#          - "Here is the link you requested: [URL]"  

#     **Context:** {context}  
#     **User's Question:** {question}  
#     **Your Response:**  
# """)


# rag_prompt = PromptTemplate.from_template(template)

# retriever = vectorstore.as_retriever()

# llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_api_key)

# # Dictionary to store user sessions with session IDs
# user_sessions = {}

# # Define the RAG chain with session history
# def rag_chain(question, session_id="default"):
#     # Get conversation history if available
#     conversation_history = session_manager.get_history(session_id)
    
#     # Get context from retriever
#     context_docs = retriever.invoke(question)
#     context = "\n".join(doc.page_content for doc in context_docs)
    
#     # Create prompt with history
#     prompt = rag_prompt.format(
#         context=context,
#         question=question,
#         conversation_history=conversation_history
#     )
    
#     # Generate response
#     response = llm.invoke(prompt).content
    
#     # Store the interaction
#     session_manager.add_interaction(session_id, question, response)
    
#     return response

# # Define the RAG memory stream function
# def rag_memory_stream(message, history):
#     # Generate a session ID based on the first message if not exists
#     session_id = None
#     for msg in history:
#         if msg[0]:  # If there's a user message
#             # Use first few characters of first message as simple session ID
#             session_id = hash(msg[0][:20]) if session_id is None else session_id
#             break
    
#     # Default session ID if history is empty
#     if session_id is None:
#         session_id = "default_session"
    
#     # Process the message and get response
#     response = rag_chain(message, str(session_id))
    
#     # Stream the response word by word
#     partial_text = ""
#     words = response.split(' ')
#     for word in words:
#         partial_text += word + " "
#         yield partial_text.strip()

# # Title with emojis
# title = "GBVR Chatbot"

# # Custom CSS for styling the interface
# custom_css = """
# body {
#     font-family: "Arial", serif;
# }
# .gradio-container {
#     font-family: "Times New Roman", serif;
# }
# .gr-button {
#     background-color: #007bff; /* Blue button */
#     color: white;
#     border: none;
#     border-radius: 5px;
#     font-size: 16px;
#     padding: 10px 20px;
#     cursor: pointer;
# }
# .gr-textbox:focus, .gr-button:focus {
#     outline: none; /* Remove outline focus for a cleaner look */
# }
# """

# # Create the Chat Interface
# demo = gr.ChatInterface(
#     fn=rag_memory_stream,
#     title=title,
#     fill_height=True,
#     theme="soft",
#     css=custom_css, # Apply the custom CSS
# )

# # Launch the app
# if __name__ == "__main__":
#     demo.launch(share=True, inbrowser=True, debug=True)
import os
from langchain_groq import ChatGroq
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from urllib.parse import urljoin, urlparse
import requests
from io import BytesIO
from langchain_chroma import Chroma
import requests
from bs4 import BeautifulSoup
from langchain_core.prompts import ChatPromptTemplate
import gradio as gr
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

# Simple session management
class SessionManager:
    def __init__(self):
        self.sessions = {}
    
    def get_or_create_session(self, session_id):
        if session_id not in self.sessions:
            self.sessions[session_id] = []
        return self.sessions[session_id]
    
    def add_interaction(self, session_id, user_message, ai_response):
        session = self.get_or_create_session(session_id)
        session.append({"user": user_message, "ai": ai_response})
    
    def get_history(self, session_id, max_turns=5):
        session = self.get_or_create_session(session_id)
        recent_history = session[-max_turns:] if len(session) > max_turns else session
        
        history_text = ""
        for interaction in recent_history:
            history_text += f"User: {interaction['user']}\n"
            history_text += f"Assistant: {interaction['ai']}\n\n"
        
        return history_text.strip()

# Initialize session manager
session_manager = SessionManager()

groq_api_key= os.environ.get('GBV')

embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")

def scrape_websites(base_urls):
    try:
        visited_links = set()  # To avoid revisiting the same link
        content_by_url = {}  # Store content from each URL

        for base_url in base_urls:
            if not base_url.strip():
                continue  # Skip empty or invalid URLs

            print(f"Scraping base URL: {base_url}")
            html_content = fetch_page_content(base_url)
            if html_content:
                cleaned_content = clean_body_content(html_content)
                content_by_url[base_url] = cleaned_content
                visited_links.add(base_url)

                # Extract and process all internal links
                soup = BeautifulSoup(html_content, "html.parser")
                links = extract_internal_links(base_url, soup)

                for link in links:
                    if link not in visited_links:
                        print(f"Scraping link: {link}")
                        page_content = fetch_page_content(link)
                        if page_content:
                            cleaned_content = clean_body_content(page_content)
                            content_by_url[link] = cleaned_content
                            visited_links.add(link)

                        # If the link is a PDF file, extract its content
                        if link.lower().endswith('.pdf'):
                            print(f"Extracting PDF content from: {link}")
                            pdf_content = extract_pdf_text(link)
                            if pdf_content:
                                content_by_url[link] = pdf_content

        return content_by_url

    except Exception as e:
        print(f"Error during scraping: {e}")
        return {}


def fetch_page_content(url):
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        return response.text
    except requests.exceptions.RequestException as e:
        print(f"Error fetching {url}: {e}")
        return None


def extract_internal_links(base_url, soup):
    links = set()
    for anchor in soup.find_all("a", href=True):
        href = anchor["href"]
        full_url = urljoin(base_url, href)
        if is_internal_link(base_url, full_url):
            links.add(full_url)
    return links


def is_internal_link(base_url, link_url):
    base_netloc = urlparse(base_url).netloc
    link_netloc = urlparse(link_url).netloc
    return base_netloc == link_netloc


def extract_pdf_text(pdf_url):
    try:
        response = requests.get(pdf_url)
        response.raise_for_status()
        with BytesIO(response.content) as file:
            reader = PdfReader(file)
            pdf_text = ""
            for page in reader.pages:
                pdf_text += page.extract_text()

        return pdf_text if pdf_text else None
    except requests.exceptions.RequestException as e:
        print(f"Error fetching PDF {pdf_url}: {e}")
        return None
    except Exception as e:
        print(f"Error reading PDF {pdf_url}: {e}")
        return None


def clean_body_content(html_content):
    soup = BeautifulSoup(html_content, "html.parser")

    
    for script_or_style in soup(["script", "style"]):
        script_or_style.extract()

    
    cleaned_content = soup.get_text(separator="\n")
    cleaned_content = "\n".join(
        line.strip() for line in cleaned_content.splitlines() if line.strip()
    )
    return cleaned_content


if __name__ == "__main__":
    website = ["https://haguruka.org.rw/"
              
               ] 
    all_content = scrape_websites(website)

    temp_list = []
    for url, content in all_content.items():
        temp_list.append((url, content)) 

    
processed_texts = []

    
for element in temp_list:
    if isinstance(element, tuple):
        url, content = element  
        processed_texts.append(f"url: {url}, content: {content}")
    elif isinstance(element, str):
        processed_texts.append(element)
    else:
        processed_texts.append(str(element))

def chunk_string(s, chunk_size=1000):
    return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]

chunked_texts = []

for text in processed_texts:
  chunked_texts.extend(chunk_string(text))


vectorstore = Chroma(
    collection_name="GBVR_Datast",
    embedding_function=embed_model,
    persist_directory="./",
)

vectorstore.get().keys()

vectorstore.add_texts(chunked_texts)

# Updated template to include conversation history
template = ("""
    You are a friendly, intelligent, and conversational AI assistant designed to provide accurate, engaging, and human-like responses based on the given context. Your goal is to extract relevant details from the provided context: {context} and assist the user effectively. Follow these guidelines:

    1. **Warm & Natural Interaction**  
       - If the user greets you (e.g., "Hello," "Hi," "Good morning"), respond warmly and acknowledge them.  
       - Example responses:  
         - "😊 Good morning! How can I assist you today?"  
         - "Hello! What can I do for you? πŸš€"  

    2. **Precise Information Extraction**  
       - Provide only the relevant details from the given context: {context}.  
       - Do not generate extra content or assumptions beyond the provided information.  

    3. **Conversational & Engaging Tone**  
       - Keep responses friendly, natural, and engaging.  
       - Use occasional emojis (e.g., 😊, πŸš€) to make interactions more lively.  

    4. **Awareness of Real-Time Context**  
       - If necessary, acknowledge the current date and time to show awareness of real-world updates.  

    5. **Handling Missing Information**  
       - If no relevant information exists in the context, respond politely:  
         - "I don't have that information at the moment, but I'm happy to help with something else! 😊"  

    6. **Personalized Interaction**  
       - Use the conversation history to provide more personalized and contextually relevant responses.
       - Previous conversation history: {conversation_history}

    7. **Direct, Concise Responses**  
       - If the user requests specific data, provide only the requested details without unnecessary explanations unless asked.  

    8. **Extracting Relevant Links**  
       - If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.  
       - Example response:  
         - "Here is the link you requested: [URL]"  

    **Context:** {context}  
    **User's Question:** {question}  
    **Your Response:**  
""")


rag_prompt = PromptTemplate.from_template(template)

retriever = vectorstore.as_retriever()

llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_api_key)

# Dictionary to store user sessions with session IDs
user_sessions = {}

# Define the RAG chain with session history
def rag_chain(question, session_id="default"):
    # Get conversation history if available
    conversation_history = session_manager.get_history(session_id)
    
    # Get context from retriever
    context_docs = retriever.invoke(question)
    context = "\n".join(doc.page_content for doc in context_docs)
    
    # Create prompt with history
    prompt = rag_prompt.format(
        context=context,
        question=question,
        conversation_history=conversation_history
    )
    
    # Generate response
    response = llm.invoke(prompt).content
    
    # Store the interaction
    session_manager.add_interaction(session_id, question, response)
    
    return response

# Define the RAG memory stream function
def rag_memory_stream(message, history):
    # Generate a session ID based on the first message if not exists
    session_id = None
    for msg in history:
        if msg[0]:  # If there's a user message
            # Use first few characters of first message as simple session ID
            session_id = hash(msg[0][:20]) if session_id is None else session_id
            break
    
    # Default session ID if history is empty
    if session_id is None:
        session_id = "default_session"
    
    # Process the message and get response
    response = rag_chain(message, str(session_id))
    
    # Stream the response word by word
    partial_text = ""
    words = response.split(' ')
    for word in words:
        partial_text += word + " "
        yield partial_text.strip()

# Title with emojis
title = "GBVR Chatbot"

# Custom CSS for styling the interface
custom_css = """
/* Custom CSS for styling the interface */
body {
    font-family: "Arial", serif;
}

.gradio-container {
    font-family: "Times New Roman", serif;
}

.gr-button {
    background-color: #007bff; /* Blue button */
    color: white;
    border: none;
    border-radius: 5px;
    font-size: 16px;
    padding: 10px 20px;
    cursor: pointer;
}

.gr-textbox:focus, .gr-button:focus {
    outline: none; /* Remove outline focus for a cleaner look */
}

/* Specific CSS for the welcome message */
.gradio-description {
    font-size: 30px; /* Set font size for the welcome message */
    font-family: "Arial", sans-serif;
    text-align: center; /* Optional: Center-align the text */
    padding: 20px; /* Optional: Add padding around the welcome message */
}

"""

# Generate a simple welcome message using the LLM
def generate_welcome_message():
    welcome_prompt = """
    Generate a short, simple welcome message for a chatbot about Gender-Based Violence Resources in Rwanda.
    Keep it under 3 sentences, and use simple language.
    Make it warm and supportive but direct and easy to read.
    """
    
    # Get the welcome message from the LLM
    welcome_message = llm.invoke(welcome_prompt).content
    return welcome_message

# Create simple welcome message
welcome_msg = generate_welcome_message()

# Create the Chat Interface with welcome message
demo = gr.ChatInterface(
    fn=rag_memory_stream,
    title=title,
    fill_height=True,
    theme="soft",
    css=custom_css, # Apply the custom CSS
    description=welcome_msg
)


# Launch the app
if __name__ == "__main__":
    demo.launch(share=True, inbrowser=True, debug=True)