Spaces:
Running
Running
File size: 59,902 Bytes
57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 ba5c284 57fd9a2 7f2bd5c 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 0a00b33 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 762cba4 ba5c284 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 bd67e9b 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 da1c657 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 ba5c284 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 762cba4 57fd9a2 762cba4 57fd9a2 762cba4 57fd9a2 762cba4 7f2bd5c 57fd9a2 7f2bd5c 762cba4 7f2bd5c 762cba4 7f2bd5c da1c657 7f2bd5c da1c657 8d3bbf0 7f2bd5c da1c657 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 57fd9a2 7f2bd5c 762cba4 7f2bd5c bd83779 762cba4 bd83779 762cba4 da1c657 762cba4 da1c657 762cba4 bd83779 762cba4 bd83779 762cba4 bd83779 762cba4 bd83779 762cba4 bd83779 762cba4 bd83779 7f2bd5c bd83779 7f2bd5c bd83779 7f2bd5c bd83779 762cba4 bd83779 762cba4 bd83779 57fd9a2 bd83779 762cba4 bd83779 762cba4 7f2bd5c bd83779 762cba4 bd83779 762cba4 bd83779 762cba4 bd83779 7f2bd5c 762cba4 bd83779 7f2bd5c bd83779 7f2bd5c bd83779 7f2bd5c bd83779 7f2bd5c bd83779 7f2bd5c bd83779 7f2bd5c bd83779 762cba4 bd83779 762cba4 57fd9a2 762cba4 57fd9a2 762cba4 57fd9a2 762cba4 57fd9a2 762cba4 57fd9a2 762cba4 57fd9a2 bd83779 57fd9a2 bd83779 fc72314 762cba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 |
# # # import os
# # # import time
# # # import pandas as pd
# # # import gradio as gr
# # # from langchain_groq import ChatGroq
# # # from langchain_huggingface import HuggingFaceEmbeddings
# # # from langchain_community.vectorstores import Chroma
# # # from langchain_core.prompts import PromptTemplate
# # # from langchain_core.output_parsers import StrOutputParser
# # # from langchain_core.runnables import RunnablePassthrough
# # # from PyPDF2 import PdfReader
# # # # Configuration constants
# # # COLLECTION_NAME = "GBVRS"
# # # DATA_FOLDER = "./"
# # # APP_VERSION = "v1.0.0"
# # # APP_NAME = "Ijwi ry'Ubufasha"
# # # MAX_HISTORY_MESSAGES = 8 # Limit history to avoid token limits
# # # # Global variables for application state
# # # llm = None
# # # embed_model = None
# # # vectorstore = None
# # # retriever = None
# # # rag_chain = None
# # # # User session management
# # # class UserSession:
# # # def __init__(self, session_id, llm):
# # # """Initialize a user session with unique ID and language model."""
# # # self.session_id = session_id
# # # self.user_info = {"Nickname": "Guest"}
# # # self.conversation_history = []
# # # self.llm = llm
# # # self.welcome_message = None
# # # self.last_activity = time.time()
# # # def set_user(self, user_info):
# # # """Set user information and generate welcome message."""
# # # self.user_info = user_info
# # # self.generate_welcome_message()
# # # # Initialize conversation history with welcome message
# # # welcome = self.get_welcome_message()
# # # self.conversation_history = [
# # # {"role": "assistant", "content": welcome},
# # # ]
# # # def get_user(self):
# # # """Get current user information."""
# # # return self.user_info
# # # def generate_welcome_message(self):
# # # """Generate a dynamic welcome message using the LLM."""
# # # try:
# # # nickname = self.user_info.get("Nickname", "Guest")
# # # # Use the LLM to generate the message
# # # prompt = (
# # # f"Create a brief and warm welcome message for {nickname} that's about 1-2 sentences. "
# # # f"Emphasize this is a safe space for discussing gender-based violence issues "
# # # f"and that we provide support and resources. Keep it warm and reassuring."
# # # )
# # # response = self.llm.invoke(prompt)
# # # welcome = response.content.strip()
# # # # Format the message with HTML styling
# # # self.welcome_message = (
# # # f"<div style='font-size: 18px; color: #4E6BBF;'>"
# # # f"{welcome}"
# # # f"</div>"
# # # )
# # # except Exception as e:
# # # # Fallback welcome message
# # # nickname = self.user_info.get("Nickname", "Guest")
# # # self.welcome_message = (
# # # f"<div style='font-size: 18px; color: #4E6BBF;'>"
# # # f"Welcome, {nickname}! You're in a safe space. We're here to provide support with "
# # # f"gender-based violence issues and connect you with resources that can help."
# # # f"</div>"
# # # )
# # # def get_welcome_message(self):
# # # """Get the formatted welcome message."""
# # # if not self.welcome_message:
# # # self.generate_welcome_message()
# # # return self.welcome_message
# # # def add_to_history(self, role, message):
# # # """Add a message to the conversation history."""
# # # self.conversation_history.append({"role": role, "content": message})
# # # self.last_activity = time.time()
# # # # Trim history if it gets too long
# # # if len(self.conversation_history) > MAX_HISTORY_MESSAGES * 2: # Keep pairs of messages
# # # # Keep the first message (welcome) and the most recent messages
# # # self.conversation_history = [self.conversation_history[0]] + self.conversation_history[-MAX_HISTORY_MESSAGES*2+1:]
# # # def get_conversation_history(self):
# # # """Get the full conversation history."""
# # # return self.conversation_history
# # # def get_formatted_history(self):
# # # """Get conversation history formatted as a string for the LLM."""
# # # # Skip the welcome message and only include the last few exchanges
# # # recent_history = self.conversation_history[1:] if len(self.conversation_history) > 1 else []
# # # # Limit to last MAX_HISTORY_MESSAGES exchanges
# # # if len(recent_history) > MAX_HISTORY_MESSAGES * 2:
# # # recent_history = recent_history[-MAX_HISTORY_MESSAGES*2:]
# # # formatted_history = ""
# # # for entry in recent_history:
# # # role = "User" if entry["role"] == "user" else "Assistant"
# # # # Truncate very long messages to avoid token limits
# # # content = entry["content"]
# # # if len(content) > 500: # Limit message length
# # # content = content[:500] + "..."
# # # formatted_history += f"{role}: {content}\n\n"
# # # return formatted_history
# # # def is_expired(self, timeout_seconds=3600):
# # # """Check if the session has been inactive for too long."""
# # # return (time.time() - self.last_activity) > timeout_seconds
# # # # Session manager to handle multiple users
# # # class SessionManager:
# # # def __init__(self):
# # # """Initialize the session manager."""
# # # self.sessions = {}
# # # self.session_timeout = 3600 # 1 hour timeout
# # # def get_session(self, session_id):
# # # """Get an existing session or create a new one."""
# # # # Clean expired sessions first
# # # self._clean_expired_sessions()
# # # # Create new session if needed
# # # if session_id not in self.sessions:
# # # self.sessions[session_id] = UserSession(session_id, llm)
# # # return self.sessions[session_id]
# # # def _clean_expired_sessions(self):
# # # """Remove expired sessions to free up memory."""
# # # expired_keys = []
# # # for key, session in self.sessions.items():
# # # if session.is_expired(self.session_timeout):
# # # expired_keys.append(key)
# # # for key in expired_keys:
# # # del self.sessions[key]
# # # # Initialize the session manager
# # # session_manager = SessionManager()
# # # def initialize_assistant():
# # # """Initialize the assistant with necessary components and configurations."""
# # # global llm, embed_model, vectorstore, retriever, rag_chain
# # # # Initialize API key - try both possible key names
# # # groq_api_key = os.environ.get('GBV') or os.environ.get('GBV')
# # # if not groq_api_key:
# # # print("WARNING: No GROQ API key found in userdata.")
# # # # Initialize LLM - Default to Llama model which is more widely available
# # # llm = ChatGroq(
# # # model="llama-3.3-70b-versatile", # More reliable than whisper model
# # # api_key=groq_api_key
# # # )
# # # # Set up embedding model
# # # try:
# # # embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# # # except Exception as e:
# # # # Fallback to smaller model
# # # embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# # # # Process data and create vector store
# # # print("Processing data files...")
# # # data = process_data_files()
# # # print("Creating vector store...")
# # # vectorstore = create_vectorstore(data)
# # # retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
# # # # Create RAG chain
# # # print("Setting up RAG chain...")
# # # rag_chain = create_rag_chain()
# # # print(f"β
{APP_NAME} initialized successfully")
# # # def process_data_files():
# # # """Process all data files from the specified folder."""
# # # context_data = []
# # # try:
# # # if not os.path.exists(DATA_FOLDER):
# # # print(f"WARNING: Data folder does not exist: {DATA_FOLDER}")
# # # return context_data
# # # # Get list of data files
# # # all_files = os.listdir(DATA_FOLDER)
# # # data_files = [f for f in all_files if f.lower().endswith(('.csv', '.xlsx', '.xls'))]
# # # if not data_files:
# # # print(f"WARNING: No data files found in: {DATA_FOLDER}")
# # # return context_data
# # # # Process each file
# # # for index, file_name in enumerate(data_files, 1):
# # # print(f"Processing file {index}/{len(data_files)}: {file_name}")
# # # file_path = os.path.join(DATA_FOLDER, file_name)
# # # try:
# # # # Read file based on extension
# # # if file_name.lower().endswith('.csv'):
# # # df = pd.read_csv(file_path)
# # # else:
# # # df = pd.read_excel(file_path)
# # # # Check if column 3 exists (source data is in third column)
# # # if df.shape[1] > 2:
# # # column_data = df.iloc[:, 2].dropna().astype(str).tolist()
# # # # Each row becomes one chunk with metadata
# # # for i, text in enumerate(column_data):
# # # if text and len(text.strip()) > 0:
# # # context_data.append({
# # # "page_content": text,
# # # "metadata": {
# # # "source": file_name,
# # # "row": i+1
# # # }
# # # })
# # # else:
# # # print(f"WARNING: File {file_name} has fewer than 3 columns.")
# # # except Exception as e:
# # # print(f"ERROR processing file {file_name}: {e}")
# # # print(f"β
Created {len(context_data)} chunks from {len(data_files)} files.")
# # # except Exception as e:
# # # print(f"ERROR accessing data folder: {e}")
# # # return context_data
# # # def create_vectorstore(data):
# # # """
# # # Creates and returns a Chroma vector store populated with the provided data.
# # # Parameters:
# # # data (list): A list of dictionaries, each containing 'page_content' and 'metadata'.
# # # Returns:
# # # Chroma: The populated Chroma vector store instance.
# # # """
# # # # Initialize the vector store
# # # vectorstore = Chroma(
# # # collection_name=COLLECTION_NAME,
# # # embedding_function=embed_model,
# # # persist_directory="./"
# # # )
# # # if not data:
# # # print("β οΈ No data provided. Returning an empty vector store.")
# # # return vectorstore
# # # try:
# # # # Extract text and metadata from the data
# # # texts = [doc["page_content"] for doc in data]
# # # # Add the texts and metadata to the vector store
# # # vectorstore.add_texts(texts)
# # # except Exception as e:
# # # print(f"β Failed to add documents to vector store: {e}")
# # # # Fix: Return vectorstore instead of vs
# # # return vectorstore # Changed from 'return vs' to 'return vectorstore'
# # # def create_rag_chain():
# # # """Create the RAG chain for processing user queries."""
# # # # Define the prompt template
# # # template = """
# # # You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your responses must be based EXCLUSIVELY on the information provided in the context. Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
# # # **Previous conversation:** {conversation_history}
# # # **Context information:** {context}
# # # **User's Question:** {question}
# # # When responding follow these guidelines:
# # # 1. **Strict Context Adherence**
# # # - Only use information that appears in the provided {context}
# # # - If the answer is not found in the context, state "I don't have that information in my available resources" rather than generating a response
# # # 2. **Personalized Communication**
# # # - Avoid contractions (e.g., use I am instead of I'm)
# # # - Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
# # # - Use selective emojis (π, π€, β€οΈ) only when tone-appropriate and not during crisis discussions
# # # - Balance warmth with professionalism
# # # 3. **Emotional Intelligence**
# # # - Validate feelings without judgment
# # # - Offer reassurance when appropriate, always centered on empowerment
# # # - Adjust your tone based on the emotional state conveyed
# # # 4. **Conversation Management**
# # # - Refer to {conversation_history} to maintain continuity and avoid repetition
# # # - Use clear paragraph breaks for readability
# # # 5. **Information Delivery**
# # # - Extract only relevant information from {context} that directly addresses the question
# # # - Present information in accessible, non-technical language
# # # - When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
# # # 6. **Safety and Ethics**
# # # - Do not generate any speculative content or advice not supported by the context
# # # - If the context contains safety information, prioritize sharing that information
# # # Your response must come entirely from the provided context, maintaining the supportive tone while never introducing information from outside the provided materials.
# # # **Context:** {context}
# # # **User's Question:** {question}
# # # **Your Response:**
# # # """
# # # rag_prompt = PromptTemplate.from_template(template)
# # # def get_context_and_question(query_with_session):
# # # # Extract query and session_id
# # # query = query_with_session["query"]
# # # session_id = query_with_session["session_id"]
# # # # Get the user session
# # # session = session_manager.get_session(session_id)
# # # user_info = session.get_user()
# # # first_name = user_info.get("Nickname", "User")
# # # conversation_hist = session.get_formatted_history()
# # # try:
# # # # Retrieve relevant documents
# # # retrieved_docs = retriever.invoke(query)
# # # context_str = format_context(retrieved_docs)
# # # except Exception as e:
# # # print(f"ERROR retrieving documents: {e}")
# # # context_str = "No relevant information found."
# # # # Return the combined inputs for the prompt
# # # return {
# # # "context": context_str,
# # # "question": query,
# # # "first_name": first_name,
# # # "conversation_history": conversation_hist
# # # }
# # # # Build the chain
# # # try:
# # # chain = (
# # # RunnablePassthrough()
# # # | get_context_and_question
# # # | rag_prompt
# # # | llm
# # # | StrOutputParser()
# # # )
# # # return chain
# # # except Exception as e:
# # # print(f"ERROR creating RAG chain: {e}")
# # # # Return a simple function as fallback
# # # def fallback_chain(query_with_session):
# # # session_id = query_with_session["session_id"]
# # # session = session_manager.get_session(session_id)
# # # nickname = session.get_user().get("Nickname", "there")
# # # return f"I'm here to help you, {nickname}, but I'm experiencing some technical difficulties right now. Please try again shortly."
# # # return fallback_chain
# # # def format_context(retrieved_docs):
# # # """Format retrieved documents into a string context."""
# # # if not retrieved_docs:
# # # return "No relevant information available."
# # # return "\n\n".join([doc.page_content for doc in retrieved_docs])
# # # def rag_memory_stream(message, history, session_id):
# # # """Process user message and generate response with memory."""
# # # # Get the user session
# # # session = session_manager.get_session(session_id)
# # # # Add user message to history
# # # session.add_to_history("user", message)
# # # try:
# # # # Get response from RAG chain
# # # print(f"Processing message for session {session_id}: {message[:50]}...")
# # # # Pass both query and session_id to the chain
# # # response = rag_chain.invoke({
# # # "query": message,
# # # "session_id": session_id
# # # })
# # # print(f"Generated response: {response[:50]}...")
# # # # Add assistant response to history
# # # session.add_to_history("assistant", response)
# # # # Yield the response
# # # yield response
# # # except Exception as e:
# # # import traceback
# # # print(f"ERROR in rag_memory_stream: {e}")
# # # print(f"Detailed error: {traceback.format_exc()}")
# # # nickname = session.get_user().get("Nickname", "there")
# # # error_msg = f"I'm sorry, {nickname}. I encountered an error processing your request. Let's try a different question."
# # # session.add_to_history("assistant", error_msg)
# # # yield error_msg
# # # def collect_user_info(nickname, session_id):
# # # """Store user details and initialize session."""
# # # if not nickname or nickname.strip() == "":
# # # return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
# # # # Store user info for chat session
# # # user_info = {
# # # "Nickname": nickname.strip(),
# # # "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
# # # }
# # # # Get the session and set user info
# # # session = session_manager.get_session(session_id)
# # # session.set_user(user_info)
# # # # Generate welcome message
# # # welcome_message = session.get_welcome_message()
# # # # Return welcome message and update UI
# # # return welcome_message, gr.update(visible=True), gr.update(visible=False), [(None, welcome_message)]
# # # def get_css():
# # # """Define CSS for the UI."""
# # # return """
# # # :root {
# # # --primary: #4E6BBF;
# # # --primary-light: #697BBF;
# # # --text-primary: #333333;
# # # --text-secondary: #666666;
# # # --background: #F9FAFC;
# # # --card-bg: #FFFFFF;
# # # --border: #E1E5F0;
# # # --shadow: rgba(0, 0, 0, 0.05);
# # # }
# # # body, .gradio-container {
# # # margin: 0;
# # # padding: 0;
# # # width: 100vw;
# # # height: 100vh;
# # # display: flex;
# # # flex-direction: column;
# # # justify-content: center;
# # # align-items: center;
# # # background: var(--background);
# # # color: var(--text-primary);
# # # font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
# # # }
# # # .gradio-container {
# # # max-width: 100%;
# # # max-height: 100%;
# # # }
# # # .gr-box {
# # # background: var(--card-bg);
# # # color: var(--text-primary);
# # # border-radius: 12px;
# # # padding: 2rem;
# # # border: 1px solid var(--border);
# # # box-shadow: 0 4px 12px var(--shadow);
# # # }
# # # .gr-button-primary {
# # # background: var(--primary);
# # # color: white;
# # # padding: 12px 24px;
# # # border-radius: 8px;
# # # transition: all 0.3s ease;
# # # border: none;
# # # font-weight: bold;
# # # }
# # # .gr-button-primary:hover {
# # # transform: translateY(-1px);
# # # box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
# # # background: var(--primary-light);
# # # }
# # # footer {
# # # text-align: center;
# # # color: var(--text-secondary);
# # # padding: 1rem;
# # # font-size: 0.9em;
# # # }
# # # .gr-markdown h2 {
# # # color: var(--primary);
# # # margin-bottom: 0.5rem;
# # # font-size: 1.8em;
# # # }
# # # .gr-markdown h3 {
# # # color: var(--text-secondary);
# # # margin-bottom: 1.5rem;
# # # font-weight: normal;
# # # }
# # # #chatbot_container .chat-title h1,
# # # #chatbot_container .empty-chatbot {
# # # color: var(--primary);
# # # }
# # # #input_nickname {
# # # padding: 12px;
# # # border-radius: 8px;
# # # border: 1px solid var(--border);
# # # background: var(--card-bg);
# # # transition: all 0.3s ease;
# # # }
# # # #input_nickname:focus {
# # # border-color: var(--primary);
# # # box-shadow: 0 0 0 2px rgba(78, 107, 191, 0.2);
# # # outline: none;
# # # }
# # # .chatbot-container .message.user {
# # # background: #E8F0FE;
# # # border-radius: 12px 12px 0 12px;
# # # }
# # # .chatbot-container .message.bot {
# # # background: #F5F7FF;
# # # border-radius: 12px 12px 12px 0;
# # # }
# # # """
# # # def create_ui():
# # # """Create and configure the Gradio UI."""
# # # with gr.Blocks(css=get_css(), theme=gr.themes.Soft()) as demo:
# # # # Create a unique session ID for this browser tab
# # # session_id = gr.State(value=f"session_{int(time.time())}_{os.urandom(4).hex()}")
# # # # Registration section
# # # with gr.Column(visible=True, elem_id="registration_container") as registration_container:
# # # gr.Markdown(f"## Welcome to {APP_NAME}")
# # # gr.Markdown("### Your privacy is important to us. Please provide a nickname to continue.")
# # # with gr.Row():
# # # first_name = gr.Textbox(
# # # label="Nickname",
# # # placeholder="Enter your nickname",
# # # scale=1,
# # # elem_id="input_nickname"
# # # )
# # # with gr.Row():
# # # submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)
# # # response_message = gr.Markdown()
# # # # Chatbot section (initially hidden)
# # # with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
# # # # Create a custom chat interface to pass session_id to our function
# # # chatbot = gr.Chatbot(
# # # elem_id="chatbot",
# # # height=500,
# # # show_label=False
# # # )
# # # with gr.Row():
# # # msg = gr.Textbox(
# # # placeholder="Type your message here...",
# # # show_label=False,
# # # container=False,
# # # scale=9
# # # )
# # # submit = gr.Button("Send", scale=1, variant="primary")
# # # examples = gr.Examples(
# # # examples=[
# # # "What resources are available for GBV victims?",
# # # "How can I report an incident?",
# # # "What are my legal rights?",
# # # "I need help, what should I do first?"
# # # ],
# # # inputs=msg
# # # )
# # # # Footer with version info
# # # gr.Markdown(f"{APP_NAME} {APP_VERSION} Β© 2025")
# # # # Handle chat message submission
# # # def respond(message, chat_history, session_id):
# # # bot_message = ""
# # # for chunk in rag_memory_stream(message, chat_history, session_id):
# # # bot_message += chunk
# # # chat_history.append((message, bot_message))
# # # return "", chat_history
# # # msg.submit(respond, [msg, chatbot, session_id], [msg, chatbot])
# # # submit.click(respond, [msg, chatbot, session_id], [msg, chatbot])
# # # # Handle user registration
# # # submit_btn.click(
# # # collect_user_info,
# # # inputs=[first_name, session_id],
# # # outputs=[response_message, chatbot_container, registration_container, chatbot]
# # # )
# # # return demo
# # # def launch_app():
# # # """Launch the Gradio interface."""
# # # ui = create_ui()
# # # ui.launch(share=True)
# # # # Main execution
# # # if __name__ == "__main__":
# # # try:
# # # # Initialize and launch the assistant
# # # initialize_assistant()
# # # launch_app()
# # # except Exception as e:
# # # import traceback
# # # print(f"β Fatal error initializing GBV Assistant: {e}")
# # # print(traceback.format_exc())
# # # # Create a minimal emergency UI to display the error
# # # with gr.Blocks() as error_demo:
# # # gr.Markdown("## System Error")
# # # gr.Markdown(f"An error occurred while initializing the application: {str(e)}")
# # # gr.Markdown("Please check your configuration and try again.")
# # # error_demo.launch(share=True, inbrowser=True, debug=True)
# # ############################################################################################################
# # import os
# # from langchain_groq import ChatGroq
# # from langchain.prompts import ChatPromptTemplate, PromptTemplate
# # from langchain.output_parsers import ResponseSchema, StructuredOutputParser
# # from urllib.parse import urljoin, urlparse
# # import requests
# # from io import BytesIO
# # from langchain_chroma import Chroma
# # import requests
# # from bs4 import BeautifulSoup
# # from langchain_core.prompts import ChatPromptTemplate
# # import gradio as gr
# # from PyPDF2 import PdfReader
# # from langchain_huggingface import HuggingFaceEmbeddings
# # groq_api_key= os.environ.get('GBV')
# # embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# # def scrape_websites(base_urls):
# # try:
# # visited_links = set() # To avoid revisiting the same link
# # content_by_url = {} # Store content from each URL
# # for base_url in base_urls:
# # if not base_url.strip():
# # continue # Skip empty or invalid URLs
# # print(f"Scraping base URL: {base_url}")
# # html_content = fetch_page_content(base_url)
# # if html_content:
# # cleaned_content = clean_body_content(html_content)
# # content_by_url[base_url] = cleaned_content
# # visited_links.add(base_url)
# # # Extract and process all internal links
# # soup = BeautifulSoup(html_content, "html.parser")
# # links = extract_internal_links(base_url, soup)
# # for link in links:
# # if link not in visited_links:
# # print(f"Scraping link: {link}")
# # page_content = fetch_page_content(link)
# # if page_content:
# # cleaned_content = clean_body_content(page_content)
# # content_by_url[link] = cleaned_content
# # visited_links.add(link)
# # # If the link is a PDF file, extract its content
# # if link.lower().endswith('.pdf'):
# # print(f"Extracting PDF content from: {link}")
# # pdf_content = extract_pdf_text(link)
# # if pdf_content:
# # content_by_url[link] = pdf_content
# # return content_by_url
# # except Exception as e:
# # print(f"Error during scraping: {e}")
# # return {}
# # def fetch_page_content(url):
# # try:
# # response = requests.get(url, timeout=10)
# # response.raise_for_status()
# # return response.text
# # except requests.exceptions.RequestException as e:
# # print(f"Error fetching {url}: {e}")
# # return None
# # def extract_internal_links(base_url, soup):
# # links = set()
# # for anchor in soup.find_all("a", href=True):
# # href = anchor["href"]
# # full_url = urljoin(base_url, href)
# # if is_internal_link(base_url, full_url):
# # links.add(full_url)
# # return links
# # def is_internal_link(base_url, link_url):
# # base_netloc = urlparse(base_url).netloc
# # link_netloc = urlparse(link_url).netloc
# # return base_netloc == link_netloc
# # def extract_pdf_text(pdf_url):
# # try:
# # response = requests.get(pdf_url)
# # response.raise_for_status()
# # with BytesIO(response.content) as file:
# # reader = PdfReader(file)
# # pdf_text = ""
# # for page in reader.pages:
# # pdf_text += page.extract_text()
# # return pdf_text if pdf_text else None
# # except requests.exceptions.RequestException as e:
# # print(f"Error fetching PDF {pdf_url}: {e}")
# # return None
# # except Exception as e:
# # print(f"Error reading PDF {pdf_url}: {e}")
# # return None
# # def clean_body_content(html_content):
# # soup = BeautifulSoup(html_content, "html.parser")
# # for script_or_style in soup(["script", "style"]):
# # script_or_style.extract()
# # cleaned_content = soup.get_text(separator="\n")
# # cleaned_content = "\n".join(
# # line.strip() for line in cleaned_content.splitlines() if line.strip()
# # )
# # return cleaned_content
# # if __name__ == "__main__":
# # website = ["https://haguruka.org.rw/"
# # ]
# # all_content = scrape_websites(website)
# # temp_list = []
# # for url, content in all_content.items():
# # temp_list.append((url, content))
# # processed_texts = []
# # for element in temp_list:
# # if isinstance(element, tuple):
# # url, content = element
# # processed_texts.append(f"url: {url}, content: {content}")
# # elif isinstance(element, str):
# # processed_texts.append(element)
# # else:
# # processed_texts.append(str(element))
# # def chunk_string(s, chunk_size=1000):
# # return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
# # chunked_texts = []
# # for text in processed_texts:
# # chunked_texts.extend(chunk_string(text))
# # vectorstore = Chroma(
# # collection_name="GBVR_Dataset",
# # embedding_function=embed_model,
# # persist_directory="./",
# # )
# # vectorstore.get().keys()
# # vectorstore.add_texts(chunked_texts)
# # template = ("""
# # You are a friendly, intelligent, and conversational AI assistant designed to provide accurate, engaging, and human-like responses based on the given context. Your goal is to extract relevant details from the provided context: {context} and assist the user effectively. Follow these guidelines:
# # 1. **Warm & Natural Interaction**
# # - If the user greets you (e.g., "Hello," "Hi," "Good morning"), respond warmly and acknowledge them.
# # - Example responses:
# # - "π Good morning! How can I assist you today?"
# # - "Hello! What can I do for you? π"
# # 2. **Precise Information Extraction**
# # - Provide only the relevant details from the given context: {context}.
# # - Do not generate extra content or assumptions beyond the provided information.
# # 3. **Conversational & Engaging Tone**
# # - Keep responses friendly, natural, and engaging.
# # - Use occasional emojis (e.g., π, π) to make interactions more lively.
# # 4. **Awareness of Real-Time Context**
# # - If necessary, acknowledge the current date and time to show awareness of real-world updates.
# # 5. **Handling Missing Information**
# # - If no relevant information exists in the context, respond politely:
# # - "I don't have that information at the moment, but I'm happy to help with something else! π"
# # 6. **Personalized Interaction**
# # - If user history is available, tailor responses based on their previous interactions for a more natural and engaging conversation.
# # 7. **Direct, Concise Responses**
# # - If the user requests specific data, provide only the requested details without unnecessary explanations unless asked.
# # 8. **Extracting Relevant Links**
# # - If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.
# # - Example response:
# # - "Here is the link you requested: [URL]"
# # **Context:** {context}
# # **User's Question:** {question}
# # **Your Response:**
# # """)
# # rag_prompt = PromptTemplate.from_template(template)
# # retriever = vectorstore.as_retriever()
# # from langchain_core.output_parsers import StrOutputParser
# # from langchain_core.runnables import RunnablePassthrough
# # llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_api_key )
# # rag_chain = (
# # {"context": retriever, "question": RunnablePassthrough()}
# # | rag_prompt
# # | llm
# # | StrOutputParser()
# # )
# # # Define the RAG memory stream function
# # def rag_memory_stream(message, history):
# # partial_text = ""
# # for new_text in rag_chain.stream(message): # Replace with actual streaming logic
# # partial_text += new_text
# # yield partial_text
# # # Title with emojis
# # title = "GBVR Chatbot"
# # # Custom CSS for styling the interface
# # custom_css = """
# # body {
# # font-family: "Arial", serif;
# # }
# # .gradio-container {
# # font-family: "Times New Roman", serif;
# # }
# # .gr-button {
# # background-color: #007bff; /* Blue button */
# # color: white;
# # border: none;
# # border-radius: 5px;
# # font-size: 16px;
# # padding: 10px 20px;
# # cursor: pointer;
# # }
# # .gr-textbox:focus, .gr-button:focus {
# # outline: none; /* Remove outline focus for a cleaner look */
# # }
# # """
# # # Create the Chat Interface
# # demo = gr.ChatInterface(
# # fn=rag_memory_stream,
# # title=title,
# # fill_height=True,
# # theme="soft",
# # css=custom_css, # Apply the custom CSS
# # )
# # # Launch the app
# # if __name__ == "__main__":
# # demo.launch(share=True, inbrowser=True, debug=True)
# import os
# from langchain_groq import ChatGroq
# from langchain.prompts import ChatPromptTemplate, PromptTemplate
# from langchain.output_parsers import ResponseSchema, StructuredOutputParser
# from urllib.parse import urljoin, urlparse
# import requests
# from io import BytesIO
# from langchain_chroma import Chroma
# import requests
# from bs4 import BeautifulSoup
# from langchain_core.prompts import ChatPromptTemplate
# import gradio as gr
# from PyPDF2 import PdfReader
# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain_core.output_parsers import StrOutputParser
# from langchain_core.runnables import RunnablePassthrough
# # Simple session management
# class SessionManager:
# def __init__(self):
# self.sessions = {}
# def get_or_create_session(self, session_id):
# if session_id not in self.sessions:
# self.sessions[session_id] = []
# return self.sessions[session_id]
# def add_interaction(self, session_id, user_message, ai_response):
# session = self.get_or_create_session(session_id)
# session.append({"user": user_message, "ai": ai_response})
# def get_history(self, session_id, max_turns=5):
# session = self.get_or_create_session(session_id)
# recent_history = session[-max_turns:] if len(session) > max_turns else session
# history_text = ""
# for interaction in recent_history:
# history_text += f"User: {interaction['user']}\n"
# history_text += f"Assistant: {interaction['ai']}\n\n"
# return history_text.strip()
# # Initialize session manager
# session_manager = SessionManager()
# groq_api_key= os.environ.get('GBV')
# embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
# def scrape_websites(base_urls):
# try:
# visited_links = set() # To avoid revisiting the same link
# content_by_url = {} # Store content from each URL
# for base_url in base_urls:
# if not base_url.strip():
# continue # Skip empty or invalid URLs
# print(f"Scraping base URL: {base_url}")
# html_content = fetch_page_content(base_url)
# if html_content:
# cleaned_content = clean_body_content(html_content)
# content_by_url[base_url] = cleaned_content
# visited_links.add(base_url)
# # Extract and process all internal links
# soup = BeautifulSoup(html_content, "html.parser")
# links = extract_internal_links(base_url, soup)
# for link in links:
# if link not in visited_links:
# print(f"Scraping link: {link}")
# page_content = fetch_page_content(link)
# if page_content:
# cleaned_content = clean_body_content(page_content)
# content_by_url[link] = cleaned_content
# visited_links.add(link)
# # If the link is a PDF file, extract its content
# if link.lower().endswith('.pdf'):
# print(f"Extracting PDF content from: {link}")
# pdf_content = extract_pdf_text(link)
# if pdf_content:
# content_by_url[link] = pdf_content
# return content_by_url
# except Exception as e:
# print(f"Error during scraping: {e}")
# return {}
# def fetch_page_content(url):
# try:
# response = requests.get(url, timeout=10)
# response.raise_for_status()
# return response.text
# except requests.exceptions.RequestException as e:
# print(f"Error fetching {url}: {e}")
# return None
# def extract_internal_links(base_url, soup):
# links = set()
# for anchor in soup.find_all("a", href=True):
# href = anchor["href"]
# full_url = urljoin(base_url, href)
# if is_internal_link(base_url, full_url):
# links.add(full_url)
# return links
# def is_internal_link(base_url, link_url):
# base_netloc = urlparse(base_url).netloc
# link_netloc = urlparse(link_url).netloc
# return base_netloc == link_netloc
# def extract_pdf_text(pdf_url):
# try:
# response = requests.get(pdf_url)
# response.raise_for_status()
# with BytesIO(response.content) as file:
# reader = PdfReader(file)
# pdf_text = ""
# for page in reader.pages:
# pdf_text += page.extract_text()
# return pdf_text if pdf_text else None
# except requests.exceptions.RequestException as e:
# print(f"Error fetching PDF {pdf_url}: {e}")
# return None
# except Exception as e:
# print(f"Error reading PDF {pdf_url}: {e}")
# return None
# def clean_body_content(html_content):
# soup = BeautifulSoup(html_content, "html.parser")
# for script_or_style in soup(["script", "style"]):
# script_or_style.extract()
# cleaned_content = soup.get_text(separator="\n")
# cleaned_content = "\n".join(
# line.strip() for line in cleaned_content.splitlines() if line.strip()
# )
# return cleaned_content
# if __name__ == "__main__":
# website = ["https://haguruka.org.rw/"
# ]
# all_content = scrape_websites(website)
# temp_list = []
# for url, content in all_content.items():
# temp_list.append((url, content))
# processed_texts = []
# for element in temp_list:
# if isinstance(element, tuple):
# url, content = element
# processed_texts.append(f"url: {url}, content: {content}")
# elif isinstance(element, str):
# processed_texts.append(element)
# else:
# processed_texts.append(str(element))
# def chunk_string(s, chunk_size=1000):
# return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
# chunked_texts = []
# for text in processed_texts:
# chunked_texts.extend(chunk_string(text))
# vectorstore = Chroma(
# collection_name="GBVR_Dataset",
# embedding_function=embed_model,
# persist_directory="./",
# )
# vectorstore.get().keys()
# vectorstore.add_texts(chunked_texts)
# # Updated template to include conversation history
# template = ("""
# You are a friendly, intelligent, and conversational AI assistant designed to provide accurate, engaging, and human-like responses based on the given context. Your goal is to extract relevant details from the provided context: {context} and assist the user effectively. Follow these guidelines:
# 1. **Warm & Natural Interaction**
# - If the user greets you (e.g., "Hello," "Hi," "Good morning"), respond warmly and acknowledge them.
# - Example responses:
# - "π Good morning! How can I assist you today?"
# - "Hello! What can I do for you? π"
# 2. **Precise Information Extraction**
# - Provide only the relevant details from the given context: {context}.
# - Do not generate extra content or assumptions beyond the provided information.
# 3. **Conversational & Engaging Tone**
# - Keep responses friendly, natural, and engaging.
# - Use occasional emojis (e.g., π, π) to make interactions more lively.
# 4. **Awareness of Real-Time Context**
# - If necessary, acknowledge the current date and time to show awareness of real-world updates.
# 5. **Handling Missing Information**
# - If no relevant information exists in the context, respond politely:
# - "I don't have that information at the moment, but I'm happy to help with something else! π"
# 6. **Personalized Interaction**
# - Use the conversation history to provide more personalized and contextually relevant responses.
# - Previous conversation history: {conversation_history}
# 7. **Direct, Concise Responses**
# - If the user requests specific data, provide only the requested details without unnecessary explanations unless asked.
# 8. **Extracting Relevant Links**
# - If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.
# - Example response:
# - "Here is the link you requested: [URL]"
# **Context:** {context}
# **User's Question:** {question}
# **Your Response:**
# """)
# rag_prompt = PromptTemplate.from_template(template)
# retriever = vectorstore.as_retriever()
# llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_api_key)
# # Dictionary to store user sessions with session IDs
# user_sessions = {}
# # Define the RAG chain with session history
# def rag_chain(question, session_id="default"):
# # Get conversation history if available
# conversation_history = session_manager.get_history(session_id)
# # Get context from retriever
# context_docs = retriever.invoke(question)
# context = "\n".join(doc.page_content for doc in context_docs)
# # Create prompt with history
# prompt = rag_prompt.format(
# context=context,
# question=question,
# conversation_history=conversation_history
# )
# # Generate response
# response = llm.invoke(prompt).content
# # Store the interaction
# session_manager.add_interaction(session_id, question, response)
# return response
# # Define the RAG memory stream function
# def rag_memory_stream(message, history):
# # Generate a session ID based on the first message if not exists
# session_id = None
# for msg in history:
# if msg[0]: # If there's a user message
# # Use first few characters of first message as simple session ID
# session_id = hash(msg[0][:20]) if session_id is None else session_id
# break
# # Default session ID if history is empty
# if session_id is None:
# session_id = "default_session"
# # Process the message and get response
# response = rag_chain(message, str(session_id))
# # Stream the response word by word
# partial_text = ""
# words = response.split(' ')
# for word in words:
# partial_text += word + " "
# yield partial_text.strip()
# # Title with emojis
# title = "GBVR Chatbot"
# # Custom CSS for styling the interface
# custom_css = """
# body {
# font-family: "Arial", serif;
# }
# .gradio-container {
# font-family: "Times New Roman", serif;
# }
# .gr-button {
# background-color: #007bff; /* Blue button */
# color: white;
# border: none;
# border-radius: 5px;
# font-size: 16px;
# padding: 10px 20px;
# cursor: pointer;
# }
# .gr-textbox:focus, .gr-button:focus {
# outline: none; /* Remove outline focus for a cleaner look */
# }
# """
# # Create the Chat Interface
# demo = gr.ChatInterface(
# fn=rag_memory_stream,
# title=title,
# fill_height=True,
# theme="soft",
# css=custom_css, # Apply the custom CSS
# )
# # Launch the app
# if __name__ == "__main__":
# demo.launch(share=True, inbrowser=True, debug=True)
import os
from langchain_groq import ChatGroq
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from urllib.parse import urljoin, urlparse
import requests
from io import BytesIO
from langchain_chroma import Chroma
import requests
from bs4 import BeautifulSoup
from langchain_core.prompts import ChatPromptTemplate
import gradio as gr
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
# Simple session management
class SessionManager:
def __init__(self):
self.sessions = {}
def get_or_create_session(self, session_id):
if session_id not in self.sessions:
self.sessions[session_id] = []
return self.sessions[session_id]
def add_interaction(self, session_id, user_message, ai_response):
session = self.get_or_create_session(session_id)
session.append({"user": user_message, "ai": ai_response})
def get_history(self, session_id, max_turns=5):
session = self.get_or_create_session(session_id)
recent_history = session[-max_turns:] if len(session) > max_turns else session
history_text = ""
for interaction in recent_history:
history_text += f"User: {interaction['user']}\n"
history_text += f"Assistant: {interaction['ai']}\n\n"
return history_text.strip()
# Initialize session manager
session_manager = SessionManager()
groq_api_key= os.environ.get('GBV')
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
def scrape_websites(base_urls):
try:
visited_links = set() # To avoid revisiting the same link
content_by_url = {} # Store content from each URL
for base_url in base_urls:
if not base_url.strip():
continue # Skip empty or invalid URLs
print(f"Scraping base URL: {base_url}")
html_content = fetch_page_content(base_url)
if html_content:
cleaned_content = clean_body_content(html_content)
content_by_url[base_url] = cleaned_content
visited_links.add(base_url)
# Extract and process all internal links
soup = BeautifulSoup(html_content, "html.parser")
links = extract_internal_links(base_url, soup)
for link in links:
if link not in visited_links:
print(f"Scraping link: {link}")
page_content = fetch_page_content(link)
if page_content:
cleaned_content = clean_body_content(page_content)
content_by_url[link] = cleaned_content
visited_links.add(link)
# If the link is a PDF file, extract its content
if link.lower().endswith('.pdf'):
print(f"Extracting PDF content from: {link}")
pdf_content = extract_pdf_text(link)
if pdf_content:
content_by_url[link] = pdf_content
return content_by_url
except Exception as e:
print(f"Error during scraping: {e}")
return {}
def fetch_page_content(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
print(f"Error fetching {url}: {e}")
return None
def extract_internal_links(base_url, soup):
links = set()
for anchor in soup.find_all("a", href=True):
href = anchor["href"]
full_url = urljoin(base_url, href)
if is_internal_link(base_url, full_url):
links.add(full_url)
return links
def is_internal_link(base_url, link_url):
base_netloc = urlparse(base_url).netloc
link_netloc = urlparse(link_url).netloc
return base_netloc == link_netloc
def extract_pdf_text(pdf_url):
try:
response = requests.get(pdf_url)
response.raise_for_status()
with BytesIO(response.content) as file:
reader = PdfReader(file)
pdf_text = ""
for page in reader.pages:
pdf_text += page.extract_text()
return pdf_text if pdf_text else None
except requests.exceptions.RequestException as e:
print(f"Error fetching PDF {pdf_url}: {e}")
return None
except Exception as e:
print(f"Error reading PDF {pdf_url}: {e}")
return None
def clean_body_content(html_content):
soup = BeautifulSoup(html_content, "html.parser")
for script_or_style in soup(["script", "style"]):
script_or_style.extract()
cleaned_content = soup.get_text(separator="\n")
cleaned_content = "\n".join(
line.strip() for line in cleaned_content.splitlines() if line.strip()
)
return cleaned_content
if __name__ == "__main__":
website = ["https://haguruka.org.rw/"
]
all_content = scrape_websites(website)
temp_list = []
for url, content in all_content.items():
temp_list.append((url, content))
processed_texts = []
for element in temp_list:
if isinstance(element, tuple):
url, content = element
processed_texts.append(f"url: {url}, content: {content}")
elif isinstance(element, str):
processed_texts.append(element)
else:
processed_texts.append(str(element))
def chunk_string(s, chunk_size=1000):
return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
chunked_texts = []
for text in processed_texts:
chunked_texts.extend(chunk_string(text))
vectorstore = Chroma(
collection_name="GBVR_Datast",
embedding_function=embed_model,
persist_directory="./",
)
vectorstore.get().keys()
vectorstore.add_texts(chunked_texts)
# Updated template to include conversation history
template = ("""
You are a friendly, intelligent, and conversational AI assistant designed to provide accurate, engaging, and human-like responses based on the given context. Your goal is to extract relevant details from the provided context: {context} and assist the user effectively. Follow these guidelines:
1. **Warm & Natural Interaction**
- If the user greets you (e.g., "Hello," "Hi," "Good morning"), respond warmly and acknowledge them.
- Example responses:
- "π Good morning! How can I assist you today?"
- "Hello! What can I do for you? π"
2. **Precise Information Extraction**
- Provide only the relevant details from the given context: {context}.
- Do not generate extra content or assumptions beyond the provided information.
3. **Conversational & Engaging Tone**
- Keep responses friendly, natural, and engaging.
- Use occasional emojis (e.g., π, π) to make interactions more lively.
4. **Awareness of Real-Time Context**
- If necessary, acknowledge the current date and time to show awareness of real-world updates.
5. **Handling Missing Information**
- If no relevant information exists in the context, respond politely:
- "I don't have that information at the moment, but I'm happy to help with something else! π"
6. **Personalized Interaction**
- Use the conversation history to provide more personalized and contextually relevant responses.
- Previous conversation history: {conversation_history}
7. **Direct, Concise Responses**
- If the user requests specific data, provide only the requested details without unnecessary explanations unless asked.
8. **Extracting Relevant Links**
- If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.
- Example response:
- "Here is the link you requested: [URL]"
**Context:** {context}
**User's Question:** {question}
**Your Response:**
""")
rag_prompt = PromptTemplate.from_template(template)
retriever = vectorstore.as_retriever()
llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_api_key)
# Dictionary to store user sessions with session IDs
user_sessions = {}
# Define the RAG chain with session history
def rag_chain(question, session_id="default"):
# Get conversation history if available
conversation_history = session_manager.get_history(session_id)
# Get context from retriever
context_docs = retriever.invoke(question)
context = "\n".join(doc.page_content for doc in context_docs)
# Create prompt with history
prompt = rag_prompt.format(
context=context,
question=question,
conversation_history=conversation_history
)
# Generate response
response = llm.invoke(prompt).content
# Store the interaction
session_manager.add_interaction(session_id, question, response)
return response
# Define the RAG memory stream function
def rag_memory_stream(message, history):
# Generate a session ID based on the first message if not exists
session_id = None
for msg in history:
if msg[0]: # If there's a user message
# Use first few characters of first message as simple session ID
session_id = hash(msg[0][:20]) if session_id is None else session_id
break
# Default session ID if history is empty
if session_id is None:
session_id = "default_session"
# Process the message and get response
response = rag_chain(message, str(session_id))
# Stream the response word by word
partial_text = ""
words = response.split(' ')
for word in words:
partial_text += word + " "
yield partial_text.strip()
# Title with emojis
title = "GBVR Chatbot"
# Custom CSS for styling the interface
custom_css = """
/* Custom CSS for styling the interface */
body {
font-family: "Arial", serif;
}
.gradio-container {
font-family: "Times New Roman", serif;
}
.gr-button {
background-color: #007bff; /* Blue button */
color: white;
border: none;
border-radius: 5px;
font-size: 16px;
padding: 10px 20px;
cursor: pointer;
}
.gr-textbox:focus, .gr-button:focus {
outline: none; /* Remove outline focus for a cleaner look */
}
/* Specific CSS for the welcome message */
.gradio-description {
font-size: 30px; /* Set font size for the welcome message */
font-family: "Arial", sans-serif;
text-align: center; /* Optional: Center-align the text */
padding: 20px; /* Optional: Add padding around the welcome message */
}
"""
# Generate a simple welcome message using the LLM
def generate_welcome_message():
welcome_prompt = """
Generate a short, simple welcome message for a chatbot about Gender-Based Violence Resources in Rwanda.
Keep it under 3 sentences, and use simple language.
Make it warm and supportive but direct and easy to read.
"""
# Get the welcome message from the LLM
welcome_message = llm.invoke(welcome_prompt).content
return welcome_message
# Create simple welcome message
welcome_msg = generate_welcome_message()
# Create the Chat Interface with welcome message
demo = gr.ChatInterface(
fn=rag_memory_stream,
title=title,
fill_height=True,
theme="soft",
css=custom_css, # Apply the custom CSS
description=welcome_msg
)
# Launch the app
if __name__ == "__main__":
demo.launch(share=True, inbrowser=True, debug=True) |