Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,45 +8,161 @@ from langchain_community.vectorstores import Chroma
|
|
8 |
from langchain_core.prompts import PromptTemplate
|
9 |
from langchain_core.output_parsers import StrOutputParser
|
10 |
from langchain_core.runnables import RunnablePassthrough
|
11 |
-
|
12 |
-
import os
|
13 |
-
from langchain_groq import ChatGroq
|
14 |
-
from langchain.prompts import ChatPromptTemplate, PromptTemplate
|
15 |
-
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
|
16 |
-
from urllib.parse import urljoin, urlparse
|
17 |
-
import requests
|
18 |
-
from io import BytesIO
|
19 |
-
from langchain_chroma import Chroma
|
20 |
-
import requests
|
21 |
-
from bs4 import BeautifulSoup
|
22 |
-
from langchain_core.prompts import ChatPromptTemplate
|
23 |
-
import gradio as gr
|
24 |
from PyPDF2 import PdfReader
|
25 |
|
26 |
|
27 |
# Configuration constants
|
28 |
-
COLLECTION_NAME = "
|
29 |
DATA_FOLDER = "./"
|
30 |
APP_VERSION = "v1.0.0"
|
31 |
-
APP_NAME = "Ijwi ry'Ubufasha
|
32 |
-
MAX_HISTORY_MESSAGES =
|
33 |
|
34 |
-
# Global state
|
35 |
-
current_user = None
|
36 |
-
welcome_message = None
|
37 |
-
conversation_history = []
|
38 |
llm = None
|
39 |
embed_model = None
|
40 |
vectorstore = None
|
41 |
retriever = None
|
42 |
rag_chain = None
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def initialize_assistant():
|
45 |
"""Initialize the assistant with necessary components and configurations."""
|
46 |
global llm, embed_model, vectorstore, retriever, rag_chain
|
47 |
|
48 |
# Initialize API key - try both possible key names
|
49 |
-
groq_api_key = os.environ.get('GBV')
|
50 |
if not groq_api_key:
|
51 |
print("WARNING: No GROQ API key found in userdata.")
|
52 |
|
@@ -64,14 +180,18 @@ def initialize_assistant():
|
|
64 |
embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
65 |
|
66 |
# Process data and create vector store
|
|
|
67 |
data = process_data_files()
|
68 |
|
|
|
69 |
vectorstore = create_vectorstore(data)
|
70 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
71 |
|
72 |
# Create RAG chain
|
|
|
73 |
rag_chain = create_rag_chain()
|
74 |
|
|
|
75 |
|
76 |
def process_data_files():
|
77 |
"""Process all data files from the specified folder."""
|
@@ -128,76 +248,98 @@ def process_data_files():
|
|
128 |
print(f"ERROR accessing data folder: {e}")
|
129 |
|
130 |
return context_data
|
131 |
-
|
132 |
def create_vectorstore(data):
|
133 |
-
"""
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
collection_name=COLLECTION_NAME,
|
136 |
embedding_function=embed_model,
|
|
|
137 |
)
|
138 |
-
|
139 |
if not data:
|
140 |
-
print("
|
141 |
-
return
|
142 |
-
|
143 |
-
# Extract text content and metadata
|
144 |
-
texts = [doc["page_content"] for doc in data]
|
145 |
-
metadatas = [doc["metadata"] for doc in data]
|
146 |
-
|
147 |
try:
|
148 |
-
#
|
149 |
-
|
150 |
-
|
|
|
|
|
151 |
except Exception as e:
|
152 |
-
print(f"
|
153 |
-
|
154 |
return vs
|
155 |
|
|
|
156 |
def create_rag_chain():
|
157 |
"""Create the RAG chain for processing user queries."""
|
158 |
# Define the prompt template
|
159 |
template = """
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
"""
|
|
|
193 |
|
194 |
rag_prompt = PromptTemplate.from_template(template)
|
195 |
|
196 |
-
def get_context_and_question(
|
197 |
-
#
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
199 |
first_name = user_info.get("Nickname", "User")
|
200 |
-
conversation_hist = get_formatted_history()
|
201 |
|
202 |
try:
|
203 |
# Retrieve relevant documents
|
@@ -229,8 +371,11 @@ def create_rag_chain():
|
|
229 |
print(f"ERROR creating RAG chain: {e}")
|
230 |
|
231 |
# Return a simple function as fallback
|
232 |
-
def fallback_chain(
|
233 |
-
|
|
|
|
|
|
|
234 |
|
235 |
return fallback_chain
|
236 |
|
@@ -240,107 +385,28 @@ def format_context(retrieved_docs):
|
|
240 |
return "No relevant information available."
|
241 |
return "\n\n".join([doc.page_content for doc in retrieved_docs])
|
242 |
|
243 |
-
def
|
244 |
-
"""Set current user and initialize welcome message."""
|
245 |
-
global current_user, conversation_history
|
246 |
-
current_user = user_info
|
247 |
-
generate_welcome_message(user_info.get("Nickname", "Guest"))
|
248 |
-
|
249 |
-
# Initialize conversation history with welcome message
|
250 |
-
welcome = get_welcome_message()
|
251 |
-
conversation_history = [
|
252 |
-
{"role": "assistant", "content": welcome},
|
253 |
-
]
|
254 |
-
|
255 |
-
def get_user():
|
256 |
-
"""Get current user information."""
|
257 |
-
global current_user
|
258 |
-
return current_user or {"Nickname": "Guest"}
|
259 |
-
|
260 |
-
def generate_welcome_message(nickname):
|
261 |
-
"""Generate a dynamic welcome message using the LLM."""
|
262 |
-
global welcome_message
|
263 |
-
try:
|
264 |
-
# Use the LLM to generate the message
|
265 |
-
prompt = (
|
266 |
-
f"Create a brief and warm welcome message for {nickname} that's about 1-2 sentences. "
|
267 |
-
f"Emphasize this is a safe space for discussing gender-based violence issues "
|
268 |
-
f"and that we provide support and resources. Keep it warm and reassuring."
|
269 |
-
)
|
270 |
-
|
271 |
-
response = llm.invoke(prompt)
|
272 |
-
welcome = response.content.strip()
|
273 |
-
|
274 |
-
# Format the message with HTML styling
|
275 |
-
welcome_message = (
|
276 |
-
f"<div style='font-size: 18px; color: #4E6BBF;'>"
|
277 |
-
f"{welcome}"
|
278 |
-
f"</div>"
|
279 |
-
)
|
280 |
-
except Exception as e:
|
281 |
-
# Fallback welcome message
|
282 |
-
welcome_message = (
|
283 |
-
f"<div style='font-size: 18px; color: #4E6BBF;'>"
|
284 |
-
f"Welcome, {nickname}! You're in a safe space. We're here to provide support with "
|
285 |
-
f"gender-based violence issues and connect you with resources that can help."
|
286 |
-
f"</div>"
|
287 |
-
)
|
288 |
-
|
289 |
-
def get_welcome_message():
|
290 |
-
"""Get the formatted welcome message."""
|
291 |
-
global welcome_message
|
292 |
-
if not welcome_message:
|
293 |
-
nickname = get_user().get("Nickname", "Guest")
|
294 |
-
generate_welcome_message(nickname)
|
295 |
-
return welcome_message
|
296 |
-
|
297 |
-
def add_to_history(role, message):
|
298 |
-
"""Add a message to the conversation history."""
|
299 |
-
global conversation_history
|
300 |
-
conversation_history.append({"role": role, "content": message})
|
301 |
-
|
302 |
-
# Trim history if it gets too long
|
303 |
-
if len(conversation_history) > MAX_HISTORY_MESSAGES * 2: # Keep pairs of messages
|
304 |
-
# Keep the first message (welcome) and the most recent messages
|
305 |
-
conversation_history = [conversation_history[0]] + conversation_history[-MAX_HISTORY_MESSAGES*2+1:]
|
306 |
-
|
307 |
-
def get_conversation_history():
|
308 |
-
"""Get the full conversation history."""
|
309 |
-
return conversation_history
|
310 |
-
|
311 |
-
def get_formatted_history():
|
312 |
-
"""Get conversation history formatted as a string for the LLM."""
|
313 |
-
# Skip the welcome message and only include the last few exchanges
|
314 |
-
recent_history = conversation_history[1:] if len(conversation_history) > 1 else []
|
315 |
-
|
316 |
-
# Limit to last MAX_HISTORY_MESSAGES exchanges
|
317 |
-
if len(recent_history) > MAX_HISTORY_MESSAGES * 2:
|
318 |
-
recent_history = recent_history[-MAX_HISTORY_MESSAGES*2:]
|
319 |
-
|
320 |
-
formatted_history = ""
|
321 |
-
for entry in recent_history:
|
322 |
-
role = "User" if entry["role"] == "user" else "Assistant"
|
323 |
-
# Truncate very long messages to avoid token limits
|
324 |
-
content = entry["content"]
|
325 |
-
if len(content) > 500: # Limit message length
|
326 |
-
content = content[:500] + "..."
|
327 |
-
formatted_history += f"{role}: {content}\n\n"
|
328 |
-
|
329 |
-
return formatted_history
|
330 |
-
|
331 |
-
def rag_memory_stream(message, history):
|
332 |
"""Process user message and generate response with memory."""
|
|
|
|
|
|
|
333 |
# Add user message to history
|
334 |
-
add_to_history("user", message)
|
335 |
|
336 |
try:
|
337 |
# Get response from RAG chain
|
338 |
-
print(f"Processing message: {message[:50]}...")
|
339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
print(f"Generated response: {response[:50]}...")
|
341 |
|
342 |
# Add assistant response to history
|
343 |
-
add_to_history("assistant", response)
|
344 |
|
345 |
# Yield the response
|
346 |
yield response
|
@@ -350,11 +416,12 @@ def rag_memory_stream(message, history):
|
|
350 |
print(f"ERROR in rag_memory_stream: {e}")
|
351 |
print(f"Detailed error: {traceback.format_exc()}")
|
352 |
|
353 |
-
|
354 |
-
|
|
|
355 |
yield error_msg
|
356 |
|
357 |
-
def collect_user_info(nickname):
|
358 |
"""Store user details and initialize session."""
|
359 |
if not nickname or nickname.strip() == "":
|
360 |
return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
|
@@ -365,11 +432,12 @@ def collect_user_info(nickname):
|
|
365 |
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
366 |
}
|
367 |
|
368 |
-
#
|
369 |
-
|
|
|
370 |
|
371 |
# Generate welcome message
|
372 |
-
welcome_message = get_welcome_message()
|
373 |
|
374 |
# Return welcome message and update UI
|
375 |
return welcome_message, gr.update(visible=True), gr.update(visible=False), [(None, welcome_message)]
|
@@ -484,6 +552,9 @@ def get_css():
|
|
484 |
def create_ui():
|
485 |
"""Create and configure the Gradio UI."""
|
486 |
with gr.Blocks(css=get_css(), theme=gr.themes.Soft()) as demo:
|
|
|
|
|
|
|
487 |
# Registration section
|
488 |
with gr.Column(visible=True, elem_id="registration_container") as registration_container:
|
489 |
gr.Markdown(f"## Welcome to {APP_NAME}")
|
@@ -504,26 +575,51 @@ def create_ui():
|
|
504 |
|
505 |
# Chatbot section (initially hidden)
|
506 |
with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
examples=[
|
512 |
"What resources are available for GBV victims?",
|
513 |
"How can I report an incident?",
|
514 |
"What are my legal rights?",
|
515 |
"I need help, what should I do first?"
|
516 |
-
]
|
|
|
517 |
)
|
518 |
|
519 |
# Footer with version info
|
520 |
gr.Markdown(f"{APP_NAME} {APP_VERSION} © 2025")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
|
522 |
# Handle user registration
|
523 |
submit_btn.click(
|
524 |
collect_user_info,
|
525 |
-
inputs=[first_name],
|
526 |
-
outputs=[response_message, chatbot_container, registration_container,
|
527 |
)
|
528 |
|
529 |
return demo
|
@@ -550,4 +646,4 @@ if __name__ == "__main__":
|
|
550 |
gr.Markdown(f"An error occurred while initializing the application: {str(e)}")
|
551 |
gr.Markdown("Please check your configuration and try again.")
|
552 |
|
553 |
-
error_demo.launch(share=True)
|
|
|
8 |
from langchain_core.prompts import PromptTemplate
|
9 |
from langchain_core.output_parsers import StrOutputParser
|
10 |
from langchain_core.runnables import RunnablePassthrough
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from PyPDF2 import PdfReader
|
12 |
|
13 |
|
14 |
# Configuration constants
|
15 |
+
COLLECTION_NAME = "GBVRS"
|
16 |
DATA_FOLDER = "./"
|
17 |
APP_VERSION = "v1.0.0"
|
18 |
+
APP_NAME = "Ijwi ry'Ubufasha"
|
19 |
+
MAX_HISTORY_MESSAGES = 8 # Limit history to avoid token limits
|
20 |
|
21 |
+
# Global variables for application state
|
|
|
|
|
|
|
22 |
llm = None
|
23 |
embed_model = None
|
24 |
vectorstore = None
|
25 |
retriever = None
|
26 |
rag_chain = None
|
27 |
|
28 |
+
# User session management
|
29 |
+
class UserSession:
|
30 |
+
def __init__(self, session_id, llm):
|
31 |
+
"""Initialize a user session with unique ID and language model."""
|
32 |
+
self.session_id = session_id
|
33 |
+
self.user_info = {"Nickname": "Guest"}
|
34 |
+
self.conversation_history = []
|
35 |
+
self.llm = llm
|
36 |
+
self.welcome_message = None
|
37 |
+
self.last_activity = time.time()
|
38 |
+
|
39 |
+
def set_user(self, user_info):
|
40 |
+
"""Set user information and generate welcome message."""
|
41 |
+
self.user_info = user_info
|
42 |
+
self.generate_welcome_message()
|
43 |
+
|
44 |
+
# Initialize conversation history with welcome message
|
45 |
+
welcome = self.get_welcome_message()
|
46 |
+
self.conversation_history = [
|
47 |
+
{"role": "assistant", "content": welcome},
|
48 |
+
]
|
49 |
+
|
50 |
+
def get_user(self):
|
51 |
+
"""Get current user information."""
|
52 |
+
return self.user_info
|
53 |
+
|
54 |
+
def generate_welcome_message(self):
|
55 |
+
"""Generate a dynamic welcome message using the LLM."""
|
56 |
+
try:
|
57 |
+
nickname = self.user_info.get("Nickname", "Guest")
|
58 |
+
|
59 |
+
# Use the LLM to generate the message
|
60 |
+
prompt = (
|
61 |
+
f"Create a brief and warm welcome message for {nickname} that's about 1-2 sentences. "
|
62 |
+
f"Emphasize this is a safe space for discussing gender-based violence issues "
|
63 |
+
f"and that we provide support and resources. Keep it warm and reassuring."
|
64 |
+
)
|
65 |
+
|
66 |
+
response = self.llm.invoke(prompt)
|
67 |
+
welcome = response.content.strip()
|
68 |
+
|
69 |
+
# Format the message with HTML styling
|
70 |
+
self.welcome_message = (
|
71 |
+
f"<div style='font-size: 18px; color: #4E6BBF;'>"
|
72 |
+
f"{welcome}"
|
73 |
+
f"</div>"
|
74 |
+
)
|
75 |
+
except Exception as e:
|
76 |
+
# Fallback welcome message
|
77 |
+
nickname = self.user_info.get("Nickname", "Guest")
|
78 |
+
self.welcome_message = (
|
79 |
+
f"<div style='font-size: 18px; color: #4E6BBF;'>"
|
80 |
+
f"Welcome, {nickname}! You're in a safe space. We're here to provide support with "
|
81 |
+
f"gender-based violence issues and connect you with resources that can help."
|
82 |
+
f"</div>"
|
83 |
+
)
|
84 |
+
|
85 |
+
def get_welcome_message(self):
|
86 |
+
"""Get the formatted welcome message."""
|
87 |
+
if not self.welcome_message:
|
88 |
+
self.generate_welcome_message()
|
89 |
+
return self.welcome_message
|
90 |
+
|
91 |
+
def add_to_history(self, role, message):
|
92 |
+
"""Add a message to the conversation history."""
|
93 |
+
self.conversation_history.append({"role": role, "content": message})
|
94 |
+
self.last_activity = time.time()
|
95 |
+
|
96 |
+
# Trim history if it gets too long
|
97 |
+
if len(self.conversation_history) > MAX_HISTORY_MESSAGES * 2: # Keep pairs of messages
|
98 |
+
# Keep the first message (welcome) and the most recent messages
|
99 |
+
self.conversation_history = [self.conversation_history[0]] + self.conversation_history[-MAX_HISTORY_MESSAGES*2+1:]
|
100 |
+
|
101 |
+
def get_conversation_history(self):
|
102 |
+
"""Get the full conversation history."""
|
103 |
+
return self.conversation_history
|
104 |
+
|
105 |
+
def get_formatted_history(self):
|
106 |
+
"""Get conversation history formatted as a string for the LLM."""
|
107 |
+
# Skip the welcome message and only include the last few exchanges
|
108 |
+
recent_history = self.conversation_history[1:] if len(self.conversation_history) > 1 else []
|
109 |
+
|
110 |
+
# Limit to last MAX_HISTORY_MESSAGES exchanges
|
111 |
+
if len(recent_history) > MAX_HISTORY_MESSAGES * 2:
|
112 |
+
recent_history = recent_history[-MAX_HISTORY_MESSAGES*2:]
|
113 |
+
|
114 |
+
formatted_history = ""
|
115 |
+
for entry in recent_history:
|
116 |
+
role = "User" if entry["role"] == "user" else "Assistant"
|
117 |
+
# Truncate very long messages to avoid token limits
|
118 |
+
content = entry["content"]
|
119 |
+
if len(content) > 500: # Limit message length
|
120 |
+
content = content[:500] + "..."
|
121 |
+
formatted_history += f"{role}: {content}\n\n"
|
122 |
+
|
123 |
+
return formatted_history
|
124 |
+
|
125 |
+
def is_expired(self, timeout_seconds=3600):
|
126 |
+
"""Check if the session has been inactive for too long."""
|
127 |
+
return (time.time() - self.last_activity) > timeout_seconds
|
128 |
+
|
129 |
+
# Session manager to handle multiple users
|
130 |
+
class SessionManager:
|
131 |
+
def __init__(self):
|
132 |
+
"""Initialize the session manager."""
|
133 |
+
self.sessions = {}
|
134 |
+
self.session_timeout = 3600 # 1 hour timeout
|
135 |
+
|
136 |
+
def get_session(self, session_id):
|
137 |
+
"""Get an existing session or create a new one."""
|
138 |
+
# Clean expired sessions first
|
139 |
+
self._clean_expired_sessions()
|
140 |
+
|
141 |
+
# Create new session if needed
|
142 |
+
if session_id not in self.sessions:
|
143 |
+
self.sessions[session_id] = UserSession(session_id, llm)
|
144 |
+
|
145 |
+
return self.sessions[session_id]
|
146 |
+
|
147 |
+
def _clean_expired_sessions(self):
|
148 |
+
"""Remove expired sessions to free up memory."""
|
149 |
+
expired_keys = []
|
150 |
+
for key, session in self.sessions.items():
|
151 |
+
if session.is_expired(self.session_timeout):
|
152 |
+
expired_keys.append(key)
|
153 |
+
|
154 |
+
for key in expired_keys:
|
155 |
+
del self.sessions[key]
|
156 |
+
|
157 |
+
# Initialize the session manager
|
158 |
+
session_manager = SessionManager()
|
159 |
+
|
160 |
def initialize_assistant():
|
161 |
"""Initialize the assistant with necessary components and configurations."""
|
162 |
global llm, embed_model, vectorstore, retriever, rag_chain
|
163 |
|
164 |
# Initialize API key - try both possible key names
|
165 |
+
groq_api_key = os.environ.get('GBV') or os.environ.get('GBV')
|
166 |
if not groq_api_key:
|
167 |
print("WARNING: No GROQ API key found in userdata.")
|
168 |
|
|
|
180 |
embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
181 |
|
182 |
# Process data and create vector store
|
183 |
+
print("Processing data files...")
|
184 |
data = process_data_files()
|
185 |
|
186 |
+
print("Creating vector store...")
|
187 |
vectorstore = create_vectorstore(data)
|
188 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
189 |
|
190 |
# Create RAG chain
|
191 |
+
print("Setting up RAG chain...")
|
192 |
rag_chain = create_rag_chain()
|
193 |
|
194 |
+
print(f"✅ {APP_NAME} initialized successfully")
|
195 |
|
196 |
def process_data_files():
|
197 |
"""Process all data files from the specified folder."""
|
|
|
248 |
print(f"ERROR accessing data folder: {e}")
|
249 |
|
250 |
return context_data
|
|
|
251 |
def create_vectorstore(data):
|
252 |
+
"""
|
253 |
+
Creates and returns a Chroma vector store populated with the provided data.
|
254 |
+
|
255 |
+
Parameters:
|
256 |
+
data (list): A list of dictionaries, each containing 'page_content' and 'metadata'.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
Chroma: The populated Chroma vector store instance.
|
260 |
+
"""
|
261 |
+
# Initialize the vector store
|
262 |
+
vectorstore = Chroma(
|
263 |
collection_name=COLLECTION_NAME,
|
264 |
embedding_function=embed_model,
|
265 |
+
persist_directory="./"
|
266 |
)
|
267 |
+
|
268 |
if not data:
|
269 |
+
print("⚠️ No data provided. Returning an empty vector store.")
|
270 |
+
return vectorstore
|
271 |
+
|
|
|
|
|
|
|
|
|
272 |
try:
|
273 |
+
# Extract text and metadata from the data
|
274 |
+
texts = [doc["page_content"] for doc in data]
|
275 |
+
|
276 |
+
# Add the texts and metadata to the vector store
|
277 |
+
vectorstore.add_texts(texts)
|
278 |
except Exception as e:
|
279 |
+
print(f"❌ Failed to add documents to vector store: {e}")
|
280 |
+
|
281 |
return vs
|
282 |
|
283 |
+
|
284 |
def create_rag_chain():
|
285 |
"""Create the RAG chain for processing user queries."""
|
286 |
# Define the prompt template
|
287 |
template = """
|
288 |
+
You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your responses must be based EXCLUSIVELY on the information provided in the context. Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
|
289 |
+
|
290 |
+
**Previous conversation:** {conversation_history}
|
291 |
+
**Context information:** {context}
|
292 |
+
**User's Question:** {question}
|
293 |
+
|
294 |
+
When responding follow these guidelines:
|
295 |
+
|
296 |
+
1. **Strict Context Adherence**
|
297 |
+
- Only use information that appears in the provided {context}
|
298 |
+
- If the answer is not found in the context, state "I don't have that information in my available resources" rather than generating a response
|
299 |
+
|
300 |
+
2. **Personalized Communication**
|
301 |
+
- Avoid contractions (e.g., use I am instead of I'm)
|
302 |
+
- Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
|
303 |
+
- Use selective emojis (😊, 🤗, ❤️) only when tone-appropriate and not during crisis discussions
|
304 |
+
- Balance warmth with professionalism
|
305 |
+
|
306 |
+
3. **Emotional Intelligence**
|
307 |
+
- Validate feelings without judgment
|
308 |
+
- Offer reassurance when appropriate, always centered on empowerment
|
309 |
+
- Adjust your tone based on the emotional state conveyed
|
310 |
+
|
311 |
+
4. **Conversation Management**
|
312 |
+
- Refer to {conversation_history} to maintain continuity and avoid repetition
|
313 |
+
- Use clear paragraph breaks for readability
|
314 |
+
|
315 |
+
5. **Information Delivery**
|
316 |
+
- Extract only relevant information from {context} that directly addresses the question
|
317 |
+
- Present information in accessible, non-technical language
|
318 |
+
- When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
|
319 |
+
|
320 |
+
6. **Safety and Ethics**
|
321 |
+
- Do not generate any speculative content or advice not supported by the context
|
322 |
+
- If the context contains safety information, prioritize sharing that information
|
323 |
+
|
324 |
+
Your response must come entirely from the provided context, maintaining the supportive tone while never introducing information from outside the provided materials.
|
325 |
+
**Context:** {context}
|
326 |
+
**User's Question:** {question}
|
327 |
+
**Your Response:**
|
328 |
"""
|
329 |
+
|
330 |
|
331 |
rag_prompt = PromptTemplate.from_template(template)
|
332 |
|
333 |
+
def get_context_and_question(query_with_session):
|
334 |
+
# Extract query and session_id
|
335 |
+
query = query_with_session["query"]
|
336 |
+
session_id = query_with_session["session_id"]
|
337 |
+
|
338 |
+
# Get the user session
|
339 |
+
session = session_manager.get_session(session_id)
|
340 |
+
user_info = session.get_user()
|
341 |
first_name = user_info.get("Nickname", "User")
|
342 |
+
conversation_hist = session.get_formatted_history()
|
343 |
|
344 |
try:
|
345 |
# Retrieve relevant documents
|
|
|
371 |
print(f"ERROR creating RAG chain: {e}")
|
372 |
|
373 |
# Return a simple function as fallback
|
374 |
+
def fallback_chain(query_with_session):
|
375 |
+
session_id = query_with_session["session_id"]
|
376 |
+
session = session_manager.get_session(session_id)
|
377 |
+
nickname = session.get_user().get("Nickname", "there")
|
378 |
+
return f"I'm here to help you, {nickname}, but I'm experiencing some technical difficulties right now. Please try again shortly."
|
379 |
|
380 |
return fallback_chain
|
381 |
|
|
|
385 |
return "No relevant information available."
|
386 |
return "\n\n".join([doc.page_content for doc in retrieved_docs])
|
387 |
|
388 |
+
def rag_memory_stream(message, history, session_id):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
"""Process user message and generate response with memory."""
|
390 |
+
# Get the user session
|
391 |
+
session = session_manager.get_session(session_id)
|
392 |
+
|
393 |
# Add user message to history
|
394 |
+
session.add_to_history("user", message)
|
395 |
|
396 |
try:
|
397 |
# Get response from RAG chain
|
398 |
+
print(f"Processing message for session {session_id}: {message[:50]}...")
|
399 |
+
|
400 |
+
# Pass both query and session_id to the chain
|
401 |
+
response = rag_chain.invoke({
|
402 |
+
"query": message,
|
403 |
+
"session_id": session_id
|
404 |
+
})
|
405 |
+
|
406 |
print(f"Generated response: {response[:50]}...")
|
407 |
|
408 |
# Add assistant response to history
|
409 |
+
session.add_to_history("assistant", response)
|
410 |
|
411 |
# Yield the response
|
412 |
yield response
|
|
|
416 |
print(f"ERROR in rag_memory_stream: {e}")
|
417 |
print(f"Detailed error: {traceback.format_exc()}")
|
418 |
|
419 |
+
nickname = session.get_user().get("Nickname", "there")
|
420 |
+
error_msg = f"I'm sorry, {nickname}. I encountered an error processing your request. Let's try a different question."
|
421 |
+
session.add_to_history("assistant", error_msg)
|
422 |
yield error_msg
|
423 |
|
424 |
+
def collect_user_info(nickname, session_id):
|
425 |
"""Store user details and initialize session."""
|
426 |
if not nickname or nickname.strip() == "":
|
427 |
return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
|
|
|
432 |
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
433 |
}
|
434 |
|
435 |
+
# Get the session and set user info
|
436 |
+
session = session_manager.get_session(session_id)
|
437 |
+
session.set_user(user_info)
|
438 |
|
439 |
# Generate welcome message
|
440 |
+
welcome_message = session.get_welcome_message()
|
441 |
|
442 |
# Return welcome message and update UI
|
443 |
return welcome_message, gr.update(visible=True), gr.update(visible=False), [(None, welcome_message)]
|
|
|
552 |
def create_ui():
|
553 |
"""Create and configure the Gradio UI."""
|
554 |
with gr.Blocks(css=get_css(), theme=gr.themes.Soft()) as demo:
|
555 |
+
# Create a unique session ID for this browser tab
|
556 |
+
session_id = gr.State(value=f"session_{int(time.time())}_{os.urandom(4).hex()}")
|
557 |
+
|
558 |
# Registration section
|
559 |
with gr.Column(visible=True, elem_id="registration_container") as registration_container:
|
560 |
gr.Markdown(f"## Welcome to {APP_NAME}")
|
|
|
575 |
|
576 |
# Chatbot section (initially hidden)
|
577 |
with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
|
578 |
+
# Create a custom chat interface to pass session_id to our function
|
579 |
+
chatbot = gr.Chatbot(
|
580 |
+
elem_id="chatbot",
|
581 |
+
height=500,
|
582 |
+
show_label=False
|
583 |
+
)
|
584 |
+
|
585 |
+
with gr.Row():
|
586 |
+
msg = gr.Textbox(
|
587 |
+
placeholder="Type your message here...",
|
588 |
+
show_label=False,
|
589 |
+
container=False,
|
590 |
+
scale=9
|
591 |
+
)
|
592 |
+
submit = gr.Button("Send", scale=1, variant="primary")
|
593 |
+
|
594 |
+
examples = gr.Examples(
|
595 |
examples=[
|
596 |
"What resources are available for GBV victims?",
|
597 |
"How can I report an incident?",
|
598 |
"What are my legal rights?",
|
599 |
"I need help, what should I do first?"
|
600 |
+
],
|
601 |
+
inputs=msg
|
602 |
)
|
603 |
|
604 |
# Footer with version info
|
605 |
gr.Markdown(f"{APP_NAME} {APP_VERSION} © 2025")
|
606 |
+
|
607 |
+
# Handle chat message submission
|
608 |
+
def respond(message, chat_history, session_id):
|
609 |
+
bot_message = ""
|
610 |
+
for chunk in rag_memory_stream(message, chat_history, session_id):
|
611 |
+
bot_message += chunk
|
612 |
+
chat_history.append((message, bot_message))
|
613 |
+
return "", chat_history
|
614 |
+
|
615 |
+
msg.submit(respond, [msg, chatbot, session_id], [msg, chatbot])
|
616 |
+
submit.click(respond, [msg, chatbot, session_id], [msg, chatbot])
|
617 |
|
618 |
# Handle user registration
|
619 |
submit_btn.click(
|
620 |
collect_user_info,
|
621 |
+
inputs=[first_name, session_id],
|
622 |
+
outputs=[response_message, chatbot_container, registration_container, chatbot]
|
623 |
)
|
624 |
|
625 |
return demo
|
|
|
646 |
gr.Markdown(f"An error occurred while initializing the application: {str(e)}")
|
647 |
gr.Markdown("Please check your configuration and try again.")
|
648 |
|
649 |
+
error_demo.launch(share=True, inbrowser=True, debug=True)
|