Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,659 +1,932 @@
|
|
1 |
-
# import os
|
2 |
-
# import time
|
3 |
-
# import pandas as pd
|
4 |
-
# import gradio as gr
|
5 |
-
# from langchain_groq import ChatGroq
|
6 |
-
# from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
-
# from langchain_community.vectorstores import Chroma
|
8 |
-
# from langchain_core.prompts import PromptTemplate
|
9 |
-
# from langchain_core.output_parsers import StrOutputParser
|
10 |
-
# from langchain_core.runnables import RunnablePassthrough
|
11 |
-
# from PyPDF2 import PdfReader
|
12 |
-
|
13 |
-
|
14 |
-
# # Configuration constants
|
15 |
-
# COLLECTION_NAME = "GBVRS"
|
16 |
-
# DATA_FOLDER = "./"
|
17 |
-
# APP_VERSION = "v1.0.0"
|
18 |
-
# APP_NAME = "Ijwi ry'Ubufasha"
|
19 |
-
# MAX_HISTORY_MESSAGES = 8 # Limit history to avoid token limits
|
20 |
-
|
21 |
-
# # Global variables for application state
|
22 |
-
# llm = None
|
23 |
-
# embed_model = None
|
24 |
-
# vectorstore = None
|
25 |
-
# retriever = None
|
26 |
-
# rag_chain = None
|
27 |
-
|
28 |
-
# # User session management
|
29 |
-
# class UserSession:
|
30 |
-
# def __init__(self, session_id, llm):
|
31 |
-
# """Initialize a user session with unique ID and language model."""
|
32 |
-
# self.session_id = session_id
|
33 |
-
# self.user_info = {"Nickname": "Guest"}
|
34 |
-
# self.conversation_history = []
|
35 |
-
# self.llm = llm
|
36 |
-
# self.welcome_message = None
|
37 |
-
# self.last_activity = time.time()
|
38 |
-
|
39 |
-
# def set_user(self, user_info):
|
40 |
-
# """Set user information and generate welcome message."""
|
41 |
-
# self.user_info = user_info
|
42 |
-
# self.generate_welcome_message()
|
43 |
-
|
44 |
-
# # Initialize conversation history with welcome message
|
45 |
-
# welcome = self.get_welcome_message()
|
46 |
-
# self.conversation_history = [
|
47 |
-
# {"role": "assistant", "content": welcome},
|
48 |
-
# ]
|
49 |
-
|
50 |
-
# def get_user(self):
|
51 |
-
# """Get current user information."""
|
52 |
-
# return self.user_info
|
53 |
-
|
54 |
-
# def generate_welcome_message(self):
|
55 |
-
# """Generate a dynamic welcome message using the LLM."""
|
56 |
-
# try:
|
57 |
-
# nickname = self.user_info.get("Nickname", "Guest")
|
58 |
|
59 |
-
# # Use the LLM to generate the message
|
60 |
-
# prompt = (
|
61 |
-
# f"Create a brief and warm welcome message for {nickname} that's about 1-2 sentences. "
|
62 |
-
# f"Emphasize this is a safe space for discussing gender-based violence issues "
|
63 |
-
# f"and that we provide support and resources. Keep it warm and reassuring."
|
64 |
-
# )
|
65 |
|
66 |
-
# response = self.llm.invoke(prompt)
|
67 |
-
# welcome = response.content.strip()
|
68 |
|
69 |
-
# # Format the message with HTML styling
|
70 |
-
# self.welcome_message = (
|
71 |
-
# f"<div style='font-size: 18px; color: #4E6BBF;'>"
|
72 |
-
# f"{welcome}"
|
73 |
-
# f"</div>"
|
74 |
-
# )
|
75 |
-
# except Exception as e:
|
76 |
-
# # Fallback welcome message
|
77 |
-
# nickname = self.user_info.get("Nickname", "Guest")
|
78 |
-
# self.welcome_message = (
|
79 |
-
# f"<div style='font-size: 18px; color: #4E6BBF;'>"
|
80 |
-
# f"Welcome, {nickname}! You're in a safe space. We're here to provide support with "
|
81 |
-
# f"gender-based violence issues and connect you with resources that can help."
|
82 |
-
# f"</div>"
|
83 |
-
# )
|
84 |
-
|
85 |
-
# def get_welcome_message(self):
|
86 |
-
# """Get the formatted welcome message."""
|
87 |
-
# if not self.welcome_message:
|
88 |
-
# self.generate_welcome_message()
|
89 |
-
# return self.welcome_message
|
90 |
-
|
91 |
-
# def add_to_history(self, role, message):
|
92 |
-
# """Add a message to the conversation history."""
|
93 |
-
# self.conversation_history.append({"role": role, "content": message})
|
94 |
-
# self.last_activity = time.time()
|
95 |
-
|
96 |
-
# # Trim history if it gets too long
|
97 |
-
# if len(self.conversation_history) > MAX_HISTORY_MESSAGES * 2: # Keep pairs of messages
|
98 |
-
# # Keep the first message (welcome) and the most recent messages
|
99 |
-
# self.conversation_history = [self.conversation_history[0]] + self.conversation_history[-MAX_HISTORY_MESSAGES*2+1:]
|
100 |
-
|
101 |
-
# def get_conversation_history(self):
|
102 |
-
# """Get the full conversation history."""
|
103 |
-
# return self.conversation_history
|
104 |
-
|
105 |
-
# def get_formatted_history(self):
|
106 |
-
# """Get conversation history formatted as a string for the LLM."""
|
107 |
-
# # Skip the welcome message and only include the last few exchanges
|
108 |
-
# recent_history = self.conversation_history[1:] if len(self.conversation_history) > 1 else []
|
109 |
-
|
110 |
-
# # Limit to last MAX_HISTORY_MESSAGES exchanges
|
111 |
-
# if len(recent_history) > MAX_HISTORY_MESSAGES * 2:
|
112 |
-
# recent_history = recent_history[-MAX_HISTORY_MESSAGES*2:]
|
113 |
|
114 |
-
# formatted_history = ""
|
115 |
-
# for entry in recent_history:
|
116 |
-
# role = "User" if entry["role"] == "user" else "Assistant"
|
117 |
-
# # Truncate very long messages to avoid token limits
|
118 |
-
# content = entry["content"]
|
119 |
-
# if len(content) > 500: # Limit message length
|
120 |
-
# content = content[:500] + "..."
|
121 |
-
# formatted_history += f"{role}: {content}\n\n"
|
122 |
|
123 |
-
# return formatted_history
|
124 |
-
|
125 |
-
# def is_expired(self, timeout_seconds=3600):
|
126 |
-
# """Check if the session has been inactive for too long."""
|
127 |
-
# return (time.time() - self.last_activity) > timeout_seconds
|
128 |
-
|
129 |
-
# # Session manager to handle multiple users
|
130 |
-
# class SessionManager:
|
131 |
-
# def __init__(self):
|
132 |
-
# """Initialize the session manager."""
|
133 |
-
# self.sessions = {}
|
134 |
-
# self.session_timeout = 3600 # 1 hour timeout
|
135 |
-
|
136 |
-
# def get_session(self, session_id):
|
137 |
-
# """Get an existing session or create a new one."""
|
138 |
-
# # Clean expired sessions first
|
139 |
-
# self._clean_expired_sessions()
|
140 |
-
|
141 |
-
# # Create new session if needed
|
142 |
-
# if session_id not in self.sessions:
|
143 |
-
# self.sessions[session_id] = UserSession(session_id, llm)
|
144 |
|
145 |
-
# return self.sessions[session_id]
|
146 |
-
|
147 |
-
# def _clean_expired_sessions(self):
|
148 |
-
# """Remove expired sessions to free up memory."""
|
149 |
-
# expired_keys = []
|
150 |
-
# for key, session in self.sessions.items():
|
151 |
-
# if session.is_expired(self.session_timeout):
|
152 |
-
# expired_keys.append(key)
|
153 |
|
154 |
-
# for key in expired_keys:
|
155 |
-
# del self.sessions[key]
|
156 |
|
157 |
-
# # Initialize the session manager
|
158 |
-
# session_manager = SessionManager()
|
159 |
|
160 |
-
# def initialize_assistant():
|
161 |
-
# """Initialize the assistant with necessary components and configurations."""
|
162 |
-
# global llm, embed_model, vectorstore, retriever, rag_chain
|
163 |
|
164 |
-
# # Initialize API key - try both possible key names
|
165 |
-
# groq_api_key = os.environ.get('GBV') or os.environ.get('GBV')
|
166 |
-
# if not groq_api_key:
|
167 |
-
# print("WARNING: No GROQ API key found in userdata.")
|
168 |
|
169 |
-
# # Initialize LLM - Default to Llama model which is more widely available
|
170 |
-
# llm = ChatGroq(
|
171 |
-
# model="llama-3.3-70b-versatile", # More reliable than whisper model
|
172 |
-
# api_key=groq_api_key
|
173 |
-
# )
|
174 |
|
175 |
-
# # Set up embedding model
|
176 |
-
# try:
|
177 |
-
# embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
178 |
-
# except Exception as e:
|
179 |
-
# # Fallback to smaller model
|
180 |
-
# embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
181 |
|
182 |
-
# # Process data and create vector store
|
183 |
-
# print("Processing data files...")
|
184 |
-
# data = process_data_files()
|
185 |
|
186 |
-
# print("Creating vector store...")
|
187 |
-
# vectorstore = create_vectorstore(data)
|
188 |
-
# retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
189 |
|
190 |
-
# # Create RAG chain
|
191 |
-
# print("Setting up RAG chain...")
|
192 |
-
# rag_chain = create_rag_chain()
|
193 |
|
194 |
-
# print(f"✅ {APP_NAME} initialized successfully")
|
195 |
|
196 |
-
# def process_data_files():
|
197 |
-
# """Process all data files from the specified folder."""
|
198 |
-
# context_data = []
|
199 |
|
200 |
-
# try:
|
201 |
-
# if not os.path.exists(DATA_FOLDER):
|
202 |
-
# print(f"WARNING: Data folder does not exist: {DATA_FOLDER}")
|
203 |
-
# return context_data
|
204 |
|
205 |
-
# # Get list of data files
|
206 |
-
# all_files = os.listdir(DATA_FOLDER)
|
207 |
-
# data_files = [f for f in all_files if f.lower().endswith(('.csv', '.xlsx', '.xls'))]
|
208 |
|
209 |
-
# if not data_files:
|
210 |
-
# print(f"WARNING: No data files found in: {DATA_FOLDER}")
|
211 |
-
# return context_data
|
212 |
|
213 |
-
# # Process each file
|
214 |
-
# for index, file_name in enumerate(data_files, 1):
|
215 |
-
# print(f"Processing file {index}/{len(data_files)}: {file_name}")
|
216 |
-
# file_path = os.path.join(DATA_FOLDER, file_name)
|
217 |
|
218 |
-
# try:
|
219 |
-
# # Read file based on extension
|
220 |
-
# if file_name.lower().endswith('.csv'):
|
221 |
-
# df = pd.read_csv(file_path)
|
222 |
-
# else:
|
223 |
-
# df = pd.read_excel(file_path)
|
224 |
|
225 |
-
# # Check if column 3 exists (source data is in third column)
|
226 |
-
# if df.shape[1] > 2:
|
227 |
-
# column_data = df.iloc[:, 2].dropna().astype(str).tolist()
|
228 |
|
229 |
-
# # Each row becomes one chunk with metadata
|
230 |
-
# for i, text in enumerate(column_data):
|
231 |
-
# if text and len(text.strip()) > 0:
|
232 |
-
# context_data.append({
|
233 |
-
# "page_content": text,
|
234 |
-
# "metadata": {
|
235 |
-
# "source": file_name,
|
236 |
-
# "row": i+1
|
237 |
-
# }
|
238 |
-
# })
|
239 |
-
# else:
|
240 |
-
# print(f"WARNING: File {file_name} has fewer than 3 columns.")
|
241 |
|
242 |
-
# except Exception as e:
|
243 |
-
# print(f"ERROR processing file {file_name}: {e}")
|
244 |
|
245 |
-
# print(f"✅ Created {len(context_data)} chunks from {len(data_files)} files.")
|
246 |
|
247 |
-
# except Exception as e:
|
248 |
-
# print(f"ERROR accessing data folder: {e}")
|
249 |
|
250 |
-
# return context_data
|
251 |
|
252 |
-
# def create_vectorstore(data):
|
253 |
-
# """
|
254 |
-
# Creates and returns a Chroma vector store populated with the provided data.
|
255 |
-
|
256 |
-
# Parameters:
|
257 |
-
# data (list): A list of dictionaries, each containing 'page_content' and 'metadata'.
|
258 |
-
|
259 |
-
# Returns:
|
260 |
-
# Chroma: The populated Chroma vector store instance.
|
261 |
-
# """
|
262 |
-
# # Initialize the vector store
|
263 |
-
# vectorstore = Chroma(
|
264 |
-
# collection_name=COLLECTION_NAME,
|
265 |
-
# embedding_function=embed_model,
|
266 |
-
# persist_directory="./"
|
267 |
-
# )
|
268 |
-
|
269 |
-
# if not data:
|
270 |
-
# print("⚠️ No data provided. Returning an empty vector store.")
|
271 |
-
# return vectorstore
|
272 |
-
|
273 |
-
# try:
|
274 |
-
# # Extract text and metadata from the data
|
275 |
-
# texts = [doc["page_content"] for doc in data]
|
276 |
-
|
277 |
-
# # Add the texts and metadata to the vector store
|
278 |
-
# vectorstore.add_texts(texts)
|
279 |
-
# except Exception as e:
|
280 |
-
# print(f"❌ Failed to add documents to vector store: {e}")
|
281 |
-
|
282 |
-
# # Fix: Return vectorstore instead of vs
|
283 |
-
# return vectorstore # Changed from 'return vs' to 'return vectorstore'
|
284 |
-
|
285 |
-
|
286 |
-
# def create_rag_chain():
|
287 |
-
# """Create the RAG chain for processing user queries."""
|
288 |
-
# # Define the prompt template
|
289 |
-
# template = """
|
290 |
-
# You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your responses must be based EXCLUSIVELY on the information provided in the context. Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
|
291 |
|
292 |
-
# **Previous conversation:** {conversation_history}
|
293 |
-
# **Context information:** {context}
|
294 |
-
# **User's Question:** {question}
|
295 |
|
296 |
-
# When responding follow these guidelines:
|
297 |
|
298 |
-
# 1. **Strict Context Adherence**
|
299 |
-
# - Only use information that appears in the provided {context}
|
300 |
-
# - If the answer is not found in the context, state "I don't have that information in my available resources" rather than generating a response
|
301 |
|
302 |
-
# 2. **Personalized Communication**
|
303 |
-
# - Avoid contractions (e.g., use I am instead of I'm)
|
304 |
-
# - Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
|
305 |
-
# - Use selective emojis (😊, 🤗, ❤️) only when tone-appropriate and not during crisis discussions
|
306 |
-
# - Balance warmth with professionalism
|
307 |
|
308 |
-
# 3. **Emotional Intelligence**
|
309 |
-
# - Validate feelings without judgment
|
310 |
-
# - Offer reassurance when appropriate, always centered on empowerment
|
311 |
-
# - Adjust your tone based on the emotional state conveyed
|
312 |
|
313 |
-
# 4. **Conversation Management**
|
314 |
-
# - Refer to {conversation_history} to maintain continuity and avoid repetition
|
315 |
-
# - Use clear paragraph breaks for readability
|
316 |
|
317 |
-
# 5. **Information Delivery**
|
318 |
-
# - Extract only relevant information from {context} that directly addresses the question
|
319 |
-
# - Present information in accessible, non-technical language
|
320 |
-
# - When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
|
321 |
-
|
322 |
-
# 6. **Safety and Ethics**
|
323 |
-
# - Do not generate any speculative content or advice not supported by the context
|
324 |
-
# - If the context contains safety information, prioritize sharing that information
|
325 |
-
|
326 |
-
# Your response must come entirely from the provided context, maintaining the supportive tone while never introducing information from outside the provided materials.
|
327 |
-
# **Context:** {context}
|
328 |
-
# **User's Question:** {question}
|
329 |
-
# **Your Response:**
|
330 |
-
# """
|
331 |
-
|
332 |
-
|
333 |
-
# rag_prompt = PromptTemplate.from_template(template)
|
334 |
-
|
335 |
-
# def get_context_and_question(query_with_session):
|
336 |
-
# # Extract query and session_id
|
337 |
-
# query = query_with_session["query"]
|
338 |
-
# session_id = query_with_session["session_id"]
|
339 |
-
|
340 |
-
# # Get the user session
|
341 |
-
# session = session_manager.get_session(session_id)
|
342 |
-
# user_info = session.get_user()
|
343 |
-
# first_name = user_info.get("Nickname", "User")
|
344 |
-
# conversation_hist = session.get_formatted_history()
|
345 |
-
|
346 |
-
# try:
|
347 |
-
# # Retrieve relevant documents
|
348 |
-
# retrieved_docs = retriever.invoke(query)
|
349 |
-
# context_str = format_context(retrieved_docs)
|
350 |
-
# except Exception as e:
|
351 |
-
# print(f"ERROR retrieving documents: {e}")
|
352 |
-
# context_str = "No relevant information found."
|
353 |
-
|
354 |
-
# # Return the combined inputs for the prompt
|
355 |
-
# return {
|
356 |
-
# "context": context_str,
|
357 |
-
# "question": query,
|
358 |
-
# "first_name": first_name,
|
359 |
-
# "conversation_history": conversation_hist
|
360 |
-
# }
|
361 |
-
|
362 |
-
# # Build the chain
|
363 |
-
# try:
|
364 |
-
# chain = (
|
365 |
-
# RunnablePassthrough()
|
366 |
-
# | get_context_and_question
|
367 |
-
# | rag_prompt
|
368 |
-
# | llm
|
369 |
-
# | StrOutputParser()
|
370 |
-
# )
|
371 |
-
# return chain
|
372 |
-
# except Exception as e:
|
373 |
-
# print(f"ERROR creating RAG chain: {e}")
|
374 |
-
|
375 |
-
# # Return a simple function as fallback
|
376 |
-
# def fallback_chain(query_with_session):
|
377 |
-
# session_id = query_with_session["session_id"]
|
378 |
-
# session = session_manager.get_session(session_id)
|
379 |
-
# nickname = session.get_user().get("Nickname", "there")
|
380 |
-
# return f"I'm here to help you, {nickname}, but I'm experiencing some technical difficulties right now. Please try again shortly."
|
381 |
-
|
382 |
-
# return fallback_chain
|
383 |
-
|
384 |
-
# def format_context(retrieved_docs):
|
385 |
-
# """Format retrieved documents into a string context."""
|
386 |
-
# if not retrieved_docs:
|
387 |
-
# return "No relevant information available."
|
388 |
-
# return "\n\n".join([doc.page_content for doc in retrieved_docs])
|
389 |
|
390 |
-
# def rag_memory_stream(message, history, session_id):
|
391 |
-
# """Process user message and generate response with memory."""
|
392 |
-
# # Get the user session
|
393 |
-
# session = session_manager.get_session(session_id)
|
394 |
|
395 |
-
#
|
396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
|
398 |
-
# try:
|
399 |
-
# # Get response from RAG chain
|
400 |
-
# print(f"Processing message for session {session_id}: {message[:50]}...")
|
401 |
|
402 |
-
# # Pass both query and session_id to the chain
|
403 |
-
# response = rag_chain.invoke({
|
404 |
-
# "query": message,
|
405 |
-
# "session_id": session_id
|
406 |
-
# })
|
407 |
|
408 |
-
# print(f"Generated response: {response[:50]}...")
|
409 |
|
410 |
-
# # Add assistant response to history
|
411 |
-
# session.add_to_history("assistant", response)
|
412 |
|
413 |
-
# # Yield the response
|
414 |
-
# yield response
|
415 |
|
416 |
-
# except Exception as e:
|
417 |
-
# import traceback
|
418 |
-
# print(f"ERROR in rag_memory_stream: {e}")
|
419 |
-
# print(f"Detailed error: {traceback.format_exc()}")
|
420 |
-
|
421 |
-
# nickname = session.get_user().get("Nickname", "there")
|
422 |
-
# error_msg = f"I'm sorry, {nickname}. I encountered an error processing your request. Let's try a different question."
|
423 |
-
# session.add_to_history("assistant", error_msg)
|
424 |
-
# yield error_msg
|
425 |
-
|
426 |
-
# def collect_user_info(nickname, session_id):
|
427 |
-
# """Store user details and initialize session."""
|
428 |
-
# if not nickname or nickname.strip() == "":
|
429 |
-
# return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
|
430 |
-
|
431 |
-
# # Store user info for chat session
|
432 |
-
# user_info = {
|
433 |
-
# "Nickname": nickname.strip(),
|
434 |
-
# "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
435 |
-
# }
|
436 |
-
|
437 |
-
# # Get the session and set user info
|
438 |
-
# session = session_manager.get_session(session_id)
|
439 |
-
# session.set_user(user_info)
|
440 |
-
|
441 |
-
# # Generate welcome message
|
442 |
-
# welcome_message = session.get_welcome_message()
|
443 |
-
|
444 |
-
# # Return welcome message and update UI
|
445 |
-
# return welcome_message, gr.update(visible=True), gr.update(visible=False), [(None, welcome_message)]
|
446 |
-
|
447 |
-
# def get_css():
|
448 |
-
# """Define CSS for the UI."""
|
449 |
-
# return """
|
450 |
-
# :root {
|
451 |
-
# --primary: #4E6BBF;
|
452 |
-
# --primary-light: #697BBF;
|
453 |
-
# --text-primary: #333333;
|
454 |
-
# --text-secondary: #666666;
|
455 |
-
# --background: #F9FAFC;
|
456 |
-
# --card-bg: #FFFFFF;
|
457 |
-
# --border: #E1E5F0;
|
458 |
-
# --shadow: rgba(0, 0, 0, 0.05);
|
459 |
-
# }
|
460 |
-
|
461 |
-
# body, .gradio-container {
|
462 |
-
# margin: 0;
|
463 |
-
# padding: 0;
|
464 |
-
# width: 100vw;
|
465 |
-
# height: 100vh;
|
466 |
-
# display: flex;
|
467 |
-
# flex-direction: column;
|
468 |
-
# justify-content: center;
|
469 |
-
# align-items: center;
|
470 |
-
# background: var(--background);
|
471 |
-
# color: var(--text-primary);
|
472 |
-
# font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
473 |
-
# }
|
474 |
-
|
475 |
-
# .gradio-container {
|
476 |
-
# max-width: 100%;
|
477 |
-
# max-height: 100%;
|
478 |
-
# }
|
479 |
-
|
480 |
-
# .gr-box {
|
481 |
-
# background: var(--card-bg);
|
482 |
-
# color: var(--text-primary);
|
483 |
-
# border-radius: 12px;
|
484 |
-
# padding: 2rem;
|
485 |
-
# border: 1px solid var(--border);
|
486 |
-
# box-shadow: 0 4px 12px var(--shadow);
|
487 |
-
# }
|
488 |
-
|
489 |
-
# .gr-button-primary {
|
490 |
-
# background: var(--primary);
|
491 |
-
# color: white;
|
492 |
-
# padding: 12px 24px;
|
493 |
-
# border-radius: 8px;
|
494 |
-
# transition: all 0.3s ease;
|
495 |
-
# border: none;
|
496 |
-
# font-weight: bold;
|
497 |
-
# }
|
498 |
-
|
499 |
-
# .gr-button-primary:hover {
|
500 |
-
# transform: translateY(-1px);
|
501 |
-
# box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
502 |
-
# background: var(--primary-light);
|
503 |
-
# }
|
504 |
-
|
505 |
-
# footer {
|
506 |
-
# text-align: center;
|
507 |
-
# color: var(--text-secondary);
|
508 |
-
# padding: 1rem;
|
509 |
-
# font-size: 0.9em;
|
510 |
-
# }
|
511 |
-
|
512 |
-
# .gr-markdown h2 {
|
513 |
-
# color: var(--primary);
|
514 |
-
# margin-bottom: 0.5rem;
|
515 |
-
# font-size: 1.8em;
|
516 |
-
# }
|
517 |
-
|
518 |
-
# .gr-markdown h3 {
|
519 |
-
# color: var(--text-secondary);
|
520 |
-
# margin-bottom: 1.5rem;
|
521 |
-
# font-weight: normal;
|
522 |
-
# }
|
523 |
-
|
524 |
-
# #chatbot_container .chat-title h1,
|
525 |
-
# #chatbot_container .empty-chatbot {
|
526 |
-
# color: var(--primary);
|
527 |
-
# }
|
528 |
-
|
529 |
-
# #input_nickname {
|
530 |
-
# padding: 12px;
|
531 |
-
# border-radius: 8px;
|
532 |
-
# border: 1px solid var(--border);
|
533 |
-
# background: var(--card-bg);
|
534 |
-
# transition: all 0.3s ease;
|
535 |
-
# }
|
536 |
-
|
537 |
-
# #input_nickname:focus {
|
538 |
-
# border-color: var(--primary);
|
539 |
-
# box-shadow: 0 0 0 2px rgba(78, 107, 191, 0.2);
|
540 |
-
# outline: none;
|
541 |
-
# }
|
542 |
-
|
543 |
-
# .chatbot-container .message.user {
|
544 |
-
# background: #E8F0FE;
|
545 |
-
# border-radius: 12px 12px 0 12px;
|
546 |
-
# }
|
547 |
-
|
548 |
-
# .chatbot-container .message.bot {
|
549 |
-
# background: #F5F7FF;
|
550 |
-
# border-radius: 12px 12px 12px 0;
|
551 |
-
# }
|
552 |
-
# """
|
553 |
-
|
554 |
-
# def create_ui():
|
555 |
-
# """Create and configure the Gradio UI."""
|
556 |
-
# with gr.Blocks(css=get_css(), theme=gr.themes.Soft()) as demo:
|
557 |
-
# # Create a unique session ID for this browser tab
|
558 |
-
# session_id = gr.State(value=f"session_{int(time.time())}_{os.urandom(4).hex()}")
|
559 |
-
|
560 |
-
# # Registration section
|
561 |
-
# with gr.Column(visible=True, elem_id="registration_container") as registration_container:
|
562 |
-
# gr.Markdown(f"## Welcome to {APP_NAME}")
|
563 |
-
# gr.Markdown("### Your privacy is important to us. Please provide a nickname to continue.")
|
564 |
-
|
565 |
-
# with gr.Row():
|
566 |
-
# first_name = gr.Textbox(
|
567 |
-
# label="Nickname",
|
568 |
-
# placeholder="Enter your nickname",
|
569 |
-
# scale=1,
|
570 |
-
# elem_id="input_nickname"
|
571 |
-
# )
|
572 |
-
|
573 |
-
# with gr.Row():
|
574 |
-
# submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)
|
575 |
-
|
576 |
-
# response_message = gr.Markdown()
|
577 |
-
|
578 |
-
# # Chatbot section (initially hidden)
|
579 |
-
# with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
|
580 |
-
# # Create a custom chat interface to pass session_id to our function
|
581 |
-
# chatbot = gr.Chatbot(
|
582 |
-
# elem_id="chatbot",
|
583 |
-
# height=500,
|
584 |
-
# show_label=False
|
585 |
-
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
586 |
|
587 |
-
#
|
588 |
-
#
|
589 |
-
#
|
590 |
-
#
|
591 |
-
#
|
592 |
-
#
|
593 |
-
#
|
594 |
-
#
|
|
|
|
|
|
|
|
|
595 |
|
596 |
-
#
|
597 |
-
#
|
598 |
-
#
|
599 |
-
#
|
600 |
-
#
|
601 |
-
#
|
602 |
-
#
|
603 |
-
# inputs=msg
|
604 |
-
# )
|
605 |
-
|
606 |
-
# # Footer with version info
|
607 |
-
# gr.Markdown(f"{APP_NAME} {APP_VERSION} © 2025")
|
608 |
|
609 |
-
#
|
610 |
-
#
|
611 |
-
|
612 |
-
#
|
613 |
-
#
|
614 |
-
#
|
615 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
|
617 |
-
#
|
618 |
-
# submit.click(respond, [msg, chatbot, session_id], [msg, chatbot])
|
619 |
|
620 |
-
# # Handle user registration
|
621 |
-
# submit_btn.click(
|
622 |
-
# collect_user_info,
|
623 |
-
# inputs=[first_name, session_id],
|
624 |
-
# outputs=[response_message, chatbot_container, registration_container, chatbot]
|
625 |
-
# )
|
626 |
|
627 |
-
# return demo
|
628 |
|
629 |
-
#
|
630 |
-
# """Launch the Gradio interface."""
|
631 |
-
# ui = create_ui()
|
632 |
-
# ui.launch(share=True)
|
633 |
|
634 |
-
|
635 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
# try:
|
637 |
-
# #
|
638 |
-
#
|
639 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
640 |
# except Exception as e:
|
641 |
-
#
|
642 |
-
#
|
643 |
-
|
644 |
-
|
645 |
-
#
|
646 |
-
#
|
647 |
-
#
|
648 |
-
#
|
649 |
-
#
|
650 |
-
|
651 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
652 |
|
|
|
|
|
|
|
|
|
653 |
|
654 |
|
655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
657 |
|
658 |
import os
|
659 |
from langchain_groq import ChatGroq
|
@@ -669,9 +942,14 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
669 |
import gradio as gr
|
670 |
from PyPDF2 import PdfReader
|
671 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
|
|
|
672 |
|
673 |
-
|
|
|
674 |
|
|
|
675 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
676 |
|
677 |
def scrape_websites(base_urls):
|
@@ -764,12 +1042,12 @@ def extract_pdf_text(pdf_url):
|
|
764 |
|
765 |
def clean_body_content(html_content):
|
766 |
soup = BeautifulSoup(html_content, "html.parser")
|
767 |
-
|
768 |
|
|
|
769 |
for script_or_style in soup(["script", "style"]):
|
770 |
script_or_style.extract()
|
771 |
-
|
772 |
|
|
|
773 |
cleaned_content = soup.get_text(separator="\n")
|
774 |
cleaned_content = "\n".join(
|
775 |
line.strip() for line in cleaned_content.splitlines() if line.strip()
|
@@ -777,54 +1055,91 @@ def clean_body_content(html_content):
|
|
777 |
return cleaned_content
|
778 |
|
779 |
|
780 |
-
if __name__ == "__main__":
|
781 |
-
website = ["https://haguruka.org.rw/"
|
782 |
-
|
783 |
-
]
|
784 |
-
all_content = scrape_websites(website)
|
785 |
-
|
786 |
-
temp_list = []
|
787 |
-
for url, content in all_content.items():
|
788 |
-
temp_list.append((url, content))
|
789 |
-
|
790 |
-
|
791 |
-
processed_texts = []
|
792 |
-
|
793 |
-
|
794 |
-
for element in temp_list:
|
795 |
-
if isinstance(element, tuple):
|
796 |
-
url, content = element
|
797 |
-
processed_texts.append(f"url: {url}, content: {content}")
|
798 |
-
elif isinstance(element, str):
|
799 |
-
processed_texts.append(element)
|
800 |
-
else:
|
801 |
-
processed_texts.append(str(element))
|
802 |
-
|
803 |
def chunk_string(s, chunk_size=1000):
|
804 |
return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
|
805 |
|
806 |
-
chunked_texts = []
|
807 |
|
808 |
-
|
809 |
-
|
|
|
|
|
|
|
810 |
|
|
|
|
|
|
|
811 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
812 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
813 |
|
814 |
|
815 |
-
|
816 |
-
|
817 |
-
embedding_function=embed_model,
|
818 |
-
persist_directory="./",
|
819 |
-
)
|
820 |
-
|
821 |
-
vectorstore.get().keys()
|
822 |
-
|
823 |
-
vectorstore.add_texts(chunked_texts)
|
824 |
-
|
825 |
|
826 |
-
template
|
827 |
-
|
|
|
828 |
|
829 |
1. **Warm & Natural Interaction**
|
830 |
- If the user greets you (e.g., "Hello," "Hi," "Good morning"), respond warmly and acknowledge them.
|
@@ -833,7 +1148,7 @@ template = ("""
|
|
833 |
- "Hello! What can I do for you? 🚀"
|
834 |
|
835 |
2. **Precise Information Extraction**
|
836 |
-
- Provide only the relevant details from the given context
|
837 |
- Do not generate extra content or assumptions beyond the provided information.
|
838 |
|
839 |
3. **Conversational & Engaging Tone**
|
@@ -848,49 +1163,134 @@ template = ("""
|
|
848 |
- "I don't have that information at the moment, but I'm happy to help with something else! 😊"
|
849 |
|
850 |
6. **Personalized Interaction**
|
851 |
-
-
|
852 |
|
853 |
7. **Direct, Concise Responses**
|
854 |
- If the user requests specific data, provide only the requested details without unnecessary explanations unless asked.
|
855 |
|
856 |
8. **Extracting Relevant Links**
|
857 |
-
- If the user asks for a link related to their request
|
858 |
- Example response:
|
859 |
- "Here is the link you requested: [URL]"
|
860 |
|
861 |
-
**Context:** {context}
|
862 |
-
|
863 |
-
**
|
864 |
-
|
865 |
-
|
|
|
|
|
|
|
|
|
866 |
|
|
|
867 |
rag_prompt = PromptTemplate.from_template(template)
|
868 |
|
869 |
-
|
870 |
-
|
871 |
-
from langchain_core.output_parsers import StrOutputParser
|
872 |
-
from langchain_core.runnables import RunnablePassthrough
|
873 |
|
874 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
875 |
|
876 |
-
|
877 |
-
|
878 |
-
| rag_prompt
|
879 |
-
| llm
|
880 |
-
| StrOutputParser()
|
881 |
-
)
|
882 |
|
|
|
|
|
883 |
|
884 |
-
# Define the
|
885 |
-
def rag_memory_stream(message, history):
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
890 |
|
891 |
# Title with emojis
|
892 |
-
title = "GBVR Chatbot"
|
893 |
-
|
894 |
|
895 |
# Custom CSS for styling the interface
|
896 |
custom_css = """
|
@@ -912,18 +1312,9 @@ body {
|
|
912 |
.gr-textbox:focus, .gr-button:focus {
|
913 |
outline: none; /* Remove outline focus for a cleaner look */
|
914 |
}
|
915 |
-
|
916 |
"""
|
917 |
|
918 |
-
# Create the Chat Interface
|
919 |
-
demo = gr.ChatInterface(
|
920 |
-
fn=rag_memory_stream,
|
921 |
-
title=title,
|
922 |
-
fill_height=True,
|
923 |
-
theme="soft",
|
924 |
-
css=custom_css, # Apply the custom CSS
|
925 |
-
)
|
926 |
-
|
927 |
# Launch the app
|
928 |
if __name__ == "__main__":
|
|
|
929 |
demo.launch(share=True, inbrowser=True, debug=True)
|
|
|
1 |
+
# # import os
|
2 |
+
# # import time
|
3 |
+
# # import pandas as pd
|
4 |
+
# # import gradio as gr
|
5 |
+
# # from langchain_groq import ChatGroq
|
6 |
+
# # from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
# # from langchain_community.vectorstores import Chroma
|
8 |
+
# # from langchain_core.prompts import PromptTemplate
|
9 |
+
# # from langchain_core.output_parsers import StrOutputParser
|
10 |
+
# # from langchain_core.runnables import RunnablePassthrough
|
11 |
+
# # from PyPDF2 import PdfReader
|
12 |
+
|
13 |
+
|
14 |
+
# # # Configuration constants
|
15 |
+
# # COLLECTION_NAME = "GBVRS"
|
16 |
+
# # DATA_FOLDER = "./"
|
17 |
+
# # APP_VERSION = "v1.0.0"
|
18 |
+
# # APP_NAME = "Ijwi ry'Ubufasha"
|
19 |
+
# # MAX_HISTORY_MESSAGES = 8 # Limit history to avoid token limits
|
20 |
+
|
21 |
+
# # # Global variables for application state
|
22 |
+
# # llm = None
|
23 |
+
# # embed_model = None
|
24 |
+
# # vectorstore = None
|
25 |
+
# # retriever = None
|
26 |
+
# # rag_chain = None
|
27 |
+
|
28 |
+
# # # User session management
|
29 |
+
# # class UserSession:
|
30 |
+
# # def __init__(self, session_id, llm):
|
31 |
+
# # """Initialize a user session with unique ID and language model."""
|
32 |
+
# # self.session_id = session_id
|
33 |
+
# # self.user_info = {"Nickname": "Guest"}
|
34 |
+
# # self.conversation_history = []
|
35 |
+
# # self.llm = llm
|
36 |
+
# # self.welcome_message = None
|
37 |
+
# # self.last_activity = time.time()
|
38 |
+
|
39 |
+
# # def set_user(self, user_info):
|
40 |
+
# # """Set user information and generate welcome message."""
|
41 |
+
# # self.user_info = user_info
|
42 |
+
# # self.generate_welcome_message()
|
43 |
+
|
44 |
+
# # # Initialize conversation history with welcome message
|
45 |
+
# # welcome = self.get_welcome_message()
|
46 |
+
# # self.conversation_history = [
|
47 |
+
# # {"role": "assistant", "content": welcome},
|
48 |
+
# # ]
|
49 |
+
|
50 |
+
# # def get_user(self):
|
51 |
+
# # """Get current user information."""
|
52 |
+
# # return self.user_info
|
53 |
+
|
54 |
+
# # def generate_welcome_message(self):
|
55 |
+
# # """Generate a dynamic welcome message using the LLM."""
|
56 |
+
# # try:
|
57 |
+
# # nickname = self.user_info.get("Nickname", "Guest")
|
58 |
|
59 |
+
# # # Use the LLM to generate the message
|
60 |
+
# # prompt = (
|
61 |
+
# # f"Create a brief and warm welcome message for {nickname} that's about 1-2 sentences. "
|
62 |
+
# # f"Emphasize this is a safe space for discussing gender-based violence issues "
|
63 |
+
# # f"and that we provide support and resources. Keep it warm and reassuring."
|
64 |
+
# # )
|
65 |
|
66 |
+
# # response = self.llm.invoke(prompt)
|
67 |
+
# # welcome = response.content.strip()
|
68 |
|
69 |
+
# # # Format the message with HTML styling
|
70 |
+
# # self.welcome_message = (
|
71 |
+
# # f"<div style='font-size: 18px; color: #4E6BBF;'>"
|
72 |
+
# # f"{welcome}"
|
73 |
+
# # f"</div>"
|
74 |
+
# # )
|
75 |
+
# # except Exception as e:
|
76 |
+
# # # Fallback welcome message
|
77 |
+
# # nickname = self.user_info.get("Nickname", "Guest")
|
78 |
+
# # self.welcome_message = (
|
79 |
+
# # f"<div style='font-size: 18px; color: #4E6BBF;'>"
|
80 |
+
# # f"Welcome, {nickname}! You're in a safe space. We're here to provide support with "
|
81 |
+
# # f"gender-based violence issues and connect you with resources that can help."
|
82 |
+
# # f"</div>"
|
83 |
+
# # )
|
84 |
+
|
85 |
+
# # def get_welcome_message(self):
|
86 |
+
# # """Get the formatted welcome message."""
|
87 |
+
# # if not self.welcome_message:
|
88 |
+
# # self.generate_welcome_message()
|
89 |
+
# # return self.welcome_message
|
90 |
+
|
91 |
+
# # def add_to_history(self, role, message):
|
92 |
+
# # """Add a message to the conversation history."""
|
93 |
+
# # self.conversation_history.append({"role": role, "content": message})
|
94 |
+
# # self.last_activity = time.time()
|
95 |
+
|
96 |
+
# # # Trim history if it gets too long
|
97 |
+
# # if len(self.conversation_history) > MAX_HISTORY_MESSAGES * 2: # Keep pairs of messages
|
98 |
+
# # # Keep the first message (welcome) and the most recent messages
|
99 |
+
# # self.conversation_history = [self.conversation_history[0]] + self.conversation_history[-MAX_HISTORY_MESSAGES*2+1:]
|
100 |
+
|
101 |
+
# # def get_conversation_history(self):
|
102 |
+
# # """Get the full conversation history."""
|
103 |
+
# # return self.conversation_history
|
104 |
+
|
105 |
+
# # def get_formatted_history(self):
|
106 |
+
# # """Get conversation history formatted as a string for the LLM."""
|
107 |
+
# # # Skip the welcome message and only include the last few exchanges
|
108 |
+
# # recent_history = self.conversation_history[1:] if len(self.conversation_history) > 1 else []
|
109 |
+
|
110 |
+
# # # Limit to last MAX_HISTORY_MESSAGES exchanges
|
111 |
+
# # if len(recent_history) > MAX_HISTORY_MESSAGES * 2:
|
112 |
+
# # recent_history = recent_history[-MAX_HISTORY_MESSAGES*2:]
|
113 |
|
114 |
+
# # formatted_history = ""
|
115 |
+
# # for entry in recent_history:
|
116 |
+
# # role = "User" if entry["role"] == "user" else "Assistant"
|
117 |
+
# # # Truncate very long messages to avoid token limits
|
118 |
+
# # content = entry["content"]
|
119 |
+
# # if len(content) > 500: # Limit message length
|
120 |
+
# # content = content[:500] + "..."
|
121 |
+
# # formatted_history += f"{role}: {content}\n\n"
|
122 |
|
123 |
+
# # return formatted_history
|
124 |
+
|
125 |
+
# # def is_expired(self, timeout_seconds=3600):
|
126 |
+
# # """Check if the session has been inactive for too long."""
|
127 |
+
# # return (time.time() - self.last_activity) > timeout_seconds
|
128 |
+
|
129 |
+
# # # Session manager to handle multiple users
|
130 |
+
# # class SessionManager:
|
131 |
+
# # def __init__(self):
|
132 |
+
# # """Initialize the session manager."""
|
133 |
+
# # self.sessions = {}
|
134 |
+
# # self.session_timeout = 3600 # 1 hour timeout
|
135 |
+
|
136 |
+
# # def get_session(self, session_id):
|
137 |
+
# # """Get an existing session or create a new one."""
|
138 |
+
# # # Clean expired sessions first
|
139 |
+
# # self._clean_expired_sessions()
|
140 |
+
|
141 |
+
# # # Create new session if needed
|
142 |
+
# # if session_id not in self.sessions:
|
143 |
+
# # self.sessions[session_id] = UserSession(session_id, llm)
|
144 |
|
145 |
+
# # return self.sessions[session_id]
|
146 |
+
|
147 |
+
# # def _clean_expired_sessions(self):
|
148 |
+
# # """Remove expired sessions to free up memory."""
|
149 |
+
# # expired_keys = []
|
150 |
+
# # for key, session in self.sessions.items():
|
151 |
+
# # if session.is_expired(self.session_timeout):
|
152 |
+
# # expired_keys.append(key)
|
153 |
|
154 |
+
# # for key in expired_keys:
|
155 |
+
# # del self.sessions[key]
|
156 |
|
157 |
+
# # # Initialize the session manager
|
158 |
+
# # session_manager = SessionManager()
|
159 |
|
160 |
+
# # def initialize_assistant():
|
161 |
+
# # """Initialize the assistant with necessary components and configurations."""
|
162 |
+
# # global llm, embed_model, vectorstore, retriever, rag_chain
|
163 |
|
164 |
+
# # # Initialize API key - try both possible key names
|
165 |
+
# # groq_api_key = os.environ.get('GBV') or os.environ.get('GBV')
|
166 |
+
# # if not groq_api_key:
|
167 |
+
# # print("WARNING: No GROQ API key found in userdata.")
|
168 |
|
169 |
+
# # # Initialize LLM - Default to Llama model which is more widely available
|
170 |
+
# # llm = ChatGroq(
|
171 |
+
# # model="llama-3.3-70b-versatile", # More reliable than whisper model
|
172 |
+
# # api_key=groq_api_key
|
173 |
+
# # )
|
174 |
|
175 |
+
# # # Set up embedding model
|
176 |
+
# # try:
|
177 |
+
# # embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
178 |
+
# # except Exception as e:
|
179 |
+
# # # Fallback to smaller model
|
180 |
+
# # embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
181 |
|
182 |
+
# # # Process data and create vector store
|
183 |
+
# # print("Processing data files...")
|
184 |
+
# # data = process_data_files()
|
185 |
|
186 |
+
# # print("Creating vector store...")
|
187 |
+
# # vectorstore = create_vectorstore(data)
|
188 |
+
# # retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
189 |
|
190 |
+
# # # Create RAG chain
|
191 |
+
# # print("Setting up RAG chain...")
|
192 |
+
# # rag_chain = create_rag_chain()
|
193 |
|
194 |
+
# # print(f"✅ {APP_NAME} initialized successfully")
|
195 |
|
196 |
+
# # def process_data_files():
|
197 |
+
# # """Process all data files from the specified folder."""
|
198 |
+
# # context_data = []
|
199 |
|
200 |
+
# # try:
|
201 |
+
# # if not os.path.exists(DATA_FOLDER):
|
202 |
+
# # print(f"WARNING: Data folder does not exist: {DATA_FOLDER}")
|
203 |
+
# # return context_data
|
204 |
|
205 |
+
# # # Get list of data files
|
206 |
+
# # all_files = os.listdir(DATA_FOLDER)
|
207 |
+
# # data_files = [f for f in all_files if f.lower().endswith(('.csv', '.xlsx', '.xls'))]
|
208 |
|
209 |
+
# # if not data_files:
|
210 |
+
# # print(f"WARNING: No data files found in: {DATA_FOLDER}")
|
211 |
+
# # return context_data
|
212 |
|
213 |
+
# # # Process each file
|
214 |
+
# # for index, file_name in enumerate(data_files, 1):
|
215 |
+
# # print(f"Processing file {index}/{len(data_files)}: {file_name}")
|
216 |
+
# # file_path = os.path.join(DATA_FOLDER, file_name)
|
217 |
|
218 |
+
# # try:
|
219 |
+
# # # Read file based on extension
|
220 |
+
# # if file_name.lower().endswith('.csv'):
|
221 |
+
# # df = pd.read_csv(file_path)
|
222 |
+
# # else:
|
223 |
+
# # df = pd.read_excel(file_path)
|
224 |
|
225 |
+
# # # Check if column 3 exists (source data is in third column)
|
226 |
+
# # if df.shape[1] > 2:
|
227 |
+
# # column_data = df.iloc[:, 2].dropna().astype(str).tolist()
|
228 |
|
229 |
+
# # # Each row becomes one chunk with metadata
|
230 |
+
# # for i, text in enumerate(column_data):
|
231 |
+
# # if text and len(text.strip()) > 0:
|
232 |
+
# # context_data.append({
|
233 |
+
# # "page_content": text,
|
234 |
+
# # "metadata": {
|
235 |
+
# # "source": file_name,
|
236 |
+
# # "row": i+1
|
237 |
+
# # }
|
238 |
+
# # })
|
239 |
+
# # else:
|
240 |
+
# # print(f"WARNING: File {file_name} has fewer than 3 columns.")
|
241 |
|
242 |
+
# # except Exception as e:
|
243 |
+
# # print(f"ERROR processing file {file_name}: {e}")
|
244 |
|
245 |
+
# # print(f"✅ Created {len(context_data)} chunks from {len(data_files)} files.")
|
246 |
|
247 |
+
# # except Exception as e:
|
248 |
+
# # print(f"ERROR accessing data folder: {e}")
|
249 |
|
250 |
+
# # return context_data
|
251 |
|
252 |
+
# # def create_vectorstore(data):
|
253 |
+
# # """
|
254 |
+
# # Creates and returns a Chroma vector store populated with the provided data.
|
255 |
+
|
256 |
+
# # Parameters:
|
257 |
+
# # data (list): A list of dictionaries, each containing 'page_content' and 'metadata'.
|
258 |
+
|
259 |
+
# # Returns:
|
260 |
+
# # Chroma: The populated Chroma vector store instance.
|
261 |
+
# # """
|
262 |
+
# # # Initialize the vector store
|
263 |
+
# # vectorstore = Chroma(
|
264 |
+
# # collection_name=COLLECTION_NAME,
|
265 |
+
# # embedding_function=embed_model,
|
266 |
+
# # persist_directory="./"
|
267 |
+
# # )
|
268 |
+
|
269 |
+
# # if not data:
|
270 |
+
# # print("⚠️ No data provided. Returning an empty vector store.")
|
271 |
+
# # return vectorstore
|
272 |
+
|
273 |
+
# # try:
|
274 |
+
# # # Extract text and metadata from the data
|
275 |
+
# # texts = [doc["page_content"] for doc in data]
|
276 |
+
|
277 |
+
# # # Add the texts and metadata to the vector store
|
278 |
+
# # vectorstore.add_texts(texts)
|
279 |
+
# # except Exception as e:
|
280 |
+
# # print(f"❌ Failed to add documents to vector store: {e}")
|
281 |
+
|
282 |
+
# # # Fix: Return vectorstore instead of vs
|
283 |
+
# # return vectorstore # Changed from 'return vs' to 'return vectorstore'
|
284 |
+
|
285 |
+
|
286 |
+
# # def create_rag_chain():
|
287 |
+
# # """Create the RAG chain for processing user queries."""
|
288 |
+
# # # Define the prompt template
|
289 |
+
# # template = """
|
290 |
+
# # You are a compassionate and supportive AI assistant specializing in helping individuals affected by Gender-Based Violence (GBV). Your responses must be based EXCLUSIVELY on the information provided in the context. Your primary goal is to provide emotionally intelligent support while maintaining appropriate boundaries.
|
291 |
|
292 |
+
# # **Previous conversation:** {conversation_history}
|
293 |
+
# # **Context information:** {context}
|
294 |
+
# # **User's Question:** {question}
|
295 |
|
296 |
+
# # When responding follow these guidelines:
|
297 |
|
298 |
+
# # 1. **Strict Context Adherence**
|
299 |
+
# # - Only use information that appears in the provided {context}
|
300 |
+
# # - If the answer is not found in the context, state "I don't have that information in my available resources" rather than generating a response
|
301 |
|
302 |
+
# # 2. **Personalized Communication**
|
303 |
+
# # - Avoid contractions (e.g., use I am instead of I'm)
|
304 |
+
# # - Incorporate thoughtful pauses or reflective questions when the conversation involves difficult topics
|
305 |
+
# # - Use selective emojis (😊, 🤗, ❤️) only when tone-appropriate and not during crisis discussions
|
306 |
+
# # - Balance warmth with professionalism
|
307 |
|
308 |
+
# # 3. **Emotional Intelligence**
|
309 |
+
# # - Validate feelings without judgment
|
310 |
+
# # - Offer reassurance when appropriate, always centered on empowerment
|
311 |
+
# # - Adjust your tone based on the emotional state conveyed
|
312 |
|
313 |
+
# # 4. **Conversation Management**
|
314 |
+
# # - Refer to {conversation_history} to maintain continuity and avoid repetition
|
315 |
+
# # - Use clear paragraph breaks for readability
|
316 |
|
317 |
+
# # 5. **Information Delivery**
|
318 |
+
# # - Extract only relevant information from {context} that directly addresses the question
|
319 |
+
# # - Present information in accessible, non-technical language
|
320 |
+
# # - When information is unavailable, respond with: "I don't have that specific information right now, {first_name}. Would it be helpful if I focus on [alternative support option]?"
|
321 |
+
|
322 |
+
# # 6. **Safety and Ethics**
|
323 |
+
# # - Do not generate any speculative content or advice not supported by the context
|
324 |
+
# # - If the context contains safety information, prioritize sharing that information
|
325 |
+
|
326 |
+
# # Your response must come entirely from the provided context, maintaining the supportive tone while never introducing information from outside the provided materials.
|
327 |
+
# # **Context:** {context}
|
328 |
+
# # **User's Question:** {question}
|
329 |
+
# # **Your Response:**
|
330 |
+
# # """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
|
|
|
|
|
|
|
|
332 |
|
333 |
+
# # rag_prompt = PromptTemplate.from_template(template)
|
334 |
+
|
335 |
+
# # def get_context_and_question(query_with_session):
|
336 |
+
# # # Extract query and session_id
|
337 |
+
# # query = query_with_session["query"]
|
338 |
+
# # session_id = query_with_session["session_id"]
|
339 |
+
|
340 |
+
# # # Get the user session
|
341 |
+
# # session = session_manager.get_session(session_id)
|
342 |
+
# # user_info = session.get_user()
|
343 |
+
# # first_name = user_info.get("Nickname", "User")
|
344 |
+
# # conversation_hist = session.get_formatted_history()
|
345 |
+
|
346 |
+
# # try:
|
347 |
+
# # # Retrieve relevant documents
|
348 |
+
# # retrieved_docs = retriever.invoke(query)
|
349 |
+
# # context_str = format_context(retrieved_docs)
|
350 |
+
# # except Exception as e:
|
351 |
+
# # print(f"ERROR retrieving documents: {e}")
|
352 |
+
# # context_str = "No relevant information found."
|
353 |
+
|
354 |
+
# # # Return the combined inputs for the prompt
|
355 |
+
# # return {
|
356 |
+
# # "context": context_str,
|
357 |
+
# # "question": query,
|
358 |
+
# # "first_name": first_name,
|
359 |
+
# # "conversation_history": conversation_hist
|
360 |
+
# # }
|
361 |
+
|
362 |
+
# # # Build the chain
|
363 |
+
# # try:
|
364 |
+
# # chain = (
|
365 |
+
# # RunnablePassthrough()
|
366 |
+
# # | get_context_and_question
|
367 |
+
# # | rag_prompt
|
368 |
+
# # | llm
|
369 |
+
# # | StrOutputParser()
|
370 |
+
# # )
|
371 |
+
# # return chain
|
372 |
+
# # except Exception as e:
|
373 |
+
# # print(f"ERROR creating RAG chain: {e}")
|
374 |
+
|
375 |
+
# # # Return a simple function as fallback
|
376 |
+
# # def fallback_chain(query_with_session):
|
377 |
+
# # session_id = query_with_session["session_id"]
|
378 |
+
# # session = session_manager.get_session(session_id)
|
379 |
+
# # nickname = session.get_user().get("Nickname", "there")
|
380 |
+
# # return f"I'm here to help you, {nickname}, but I'm experiencing some technical difficulties right now. Please try again shortly."
|
381 |
+
|
382 |
+
# # return fallback_chain
|
383 |
+
|
384 |
+
# # def format_context(retrieved_docs):
|
385 |
+
# # """Format retrieved documents into a string context."""
|
386 |
+
# # if not retrieved_docs:
|
387 |
+
# # return "No relevant information available."
|
388 |
+
# # return "\n\n".join([doc.page_content for doc in retrieved_docs])
|
389 |
+
|
390 |
+
# # def rag_memory_stream(message, history, session_id):
|
391 |
+
# # """Process user message and generate response with memory."""
|
392 |
+
# # # Get the user session
|
393 |
+
# # session = session_manager.get_session(session_id)
|
394 |
+
|
395 |
+
# # # Add user message to history
|
396 |
+
# # session.add_to_history("user", message)
|
397 |
|
398 |
+
# # try:
|
399 |
+
# # # Get response from RAG chain
|
400 |
+
# # print(f"Processing message for session {session_id}: {message[:50]}...")
|
401 |
|
402 |
+
# # # Pass both query and session_id to the chain
|
403 |
+
# # response = rag_chain.invoke({
|
404 |
+
# # "query": message,
|
405 |
+
# # "session_id": session_id
|
406 |
+
# # })
|
407 |
|
408 |
+
# # print(f"Generated response: {response[:50]}...")
|
409 |
|
410 |
+
# # # Add assistant response to history
|
411 |
+
# # session.add_to_history("assistant", response)
|
412 |
|
413 |
+
# # # Yield the response
|
414 |
+
# # yield response
|
415 |
|
416 |
+
# # except Exception as e:
|
417 |
+
# # import traceback
|
418 |
+
# # print(f"ERROR in rag_memory_stream: {e}")
|
419 |
+
# # print(f"Detailed error: {traceback.format_exc()}")
|
420 |
+
|
421 |
+
# # nickname = session.get_user().get("Nickname", "there")
|
422 |
+
# # error_msg = f"I'm sorry, {nickname}. I encountered an error processing your request. Let's try a different question."
|
423 |
+
# # session.add_to_history("assistant", error_msg)
|
424 |
+
# # yield error_msg
|
425 |
+
|
426 |
+
# # def collect_user_info(nickname, session_id):
|
427 |
+
# # """Store user details and initialize session."""
|
428 |
+
# # if not nickname or nickname.strip() == "":
|
429 |
+
# # return "Nickname is required to proceed.", gr.update(visible=False), gr.update(visible=True), []
|
430 |
+
|
431 |
+
# # # Store user info for chat session
|
432 |
+
# # user_info = {
|
433 |
+
# # "Nickname": nickname.strip(),
|
434 |
+
# # "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
435 |
+
# # }
|
436 |
+
|
437 |
+
# # # Get the session and set user info
|
438 |
+
# # session = session_manager.get_session(session_id)
|
439 |
+
# # session.set_user(user_info)
|
440 |
+
|
441 |
+
# # # Generate welcome message
|
442 |
+
# # welcome_message = session.get_welcome_message()
|
443 |
+
|
444 |
+
# # # Return welcome message and update UI
|
445 |
+
# # return welcome_message, gr.update(visible=True), gr.update(visible=False), [(None, welcome_message)]
|
446 |
+
|
447 |
+
# # def get_css():
|
448 |
+
# # """Define CSS for the UI."""
|
449 |
+
# # return """
|
450 |
+
# # :root {
|
451 |
+
# # --primary: #4E6BBF;
|
452 |
+
# # --primary-light: #697BBF;
|
453 |
+
# # --text-primary: #333333;
|
454 |
+
# # --text-secondary: #666666;
|
455 |
+
# # --background: #F9FAFC;
|
456 |
+
# # --card-bg: #FFFFFF;
|
457 |
+
# # --border: #E1E5F0;
|
458 |
+
# # --shadow: rgba(0, 0, 0, 0.05);
|
459 |
+
# # }
|
460 |
+
|
461 |
+
# # body, .gradio-container {
|
462 |
+
# # margin: 0;
|
463 |
+
# # padding: 0;
|
464 |
+
# # width: 100vw;
|
465 |
+
# # height: 100vh;
|
466 |
+
# # display: flex;
|
467 |
+
# # flex-direction: column;
|
468 |
+
# # justify-content: center;
|
469 |
+
# # align-items: center;
|
470 |
+
# # background: var(--background);
|
471 |
+
# # color: var(--text-primary);
|
472 |
+
# # font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
473 |
+
# # }
|
474 |
+
|
475 |
+
# # .gradio-container {
|
476 |
+
# # max-width: 100%;
|
477 |
+
# # max-height: 100%;
|
478 |
+
# # }
|
479 |
+
|
480 |
+
# # .gr-box {
|
481 |
+
# # background: var(--card-bg);
|
482 |
+
# # color: var(--text-primary);
|
483 |
+
# # border-radius: 12px;
|
484 |
+
# # padding: 2rem;
|
485 |
+
# # border: 1px solid var(--border);
|
486 |
+
# # box-shadow: 0 4px 12px var(--shadow);
|
487 |
+
# # }
|
488 |
+
|
489 |
+
# # .gr-button-primary {
|
490 |
+
# # background: var(--primary);
|
491 |
+
# # color: white;
|
492 |
+
# # padding: 12px 24px;
|
493 |
+
# # border-radius: 8px;
|
494 |
+
# # transition: all 0.3s ease;
|
495 |
+
# # border: none;
|
496 |
+
# # font-weight: bold;
|
497 |
+
# # }
|
498 |
+
|
499 |
+
# # .gr-button-primary:hover {
|
500 |
+
# # transform: translateY(-1px);
|
501 |
+
# # box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
502 |
+
# # background: var(--primary-light);
|
503 |
+
# # }
|
504 |
+
|
505 |
+
# # footer {
|
506 |
+
# # text-align: center;
|
507 |
+
# # color: var(--text-secondary);
|
508 |
+
# # padding: 1rem;
|
509 |
+
# # font-size: 0.9em;
|
510 |
+
# # }
|
511 |
+
|
512 |
+
# # .gr-markdown h2 {
|
513 |
+
# # color: var(--primary);
|
514 |
+
# # margin-bottom: 0.5rem;
|
515 |
+
# # font-size: 1.8em;
|
516 |
+
# # }
|
517 |
+
|
518 |
+
# # .gr-markdown h3 {
|
519 |
+
# # color: var(--text-secondary);
|
520 |
+
# # margin-bottom: 1.5rem;
|
521 |
+
# # font-weight: normal;
|
522 |
+
# # }
|
523 |
+
|
524 |
+
# # #chatbot_container .chat-title h1,
|
525 |
+
# # #chatbot_container .empty-chatbot {
|
526 |
+
# # color: var(--primary);
|
527 |
+
# # }
|
528 |
+
|
529 |
+
# # #input_nickname {
|
530 |
+
# # padding: 12px;
|
531 |
+
# # border-radius: 8px;
|
532 |
+
# # border: 1px solid var(--border);
|
533 |
+
# # background: var(--card-bg);
|
534 |
+
# # transition: all 0.3s ease;
|
535 |
+
# # }
|
536 |
+
|
537 |
+
# # #input_nickname:focus {
|
538 |
+
# # border-color: var(--primary);
|
539 |
+
# # box-shadow: 0 0 0 2px rgba(78, 107, 191, 0.2);
|
540 |
+
# # outline: none;
|
541 |
+
# # }
|
542 |
+
|
543 |
+
# # .chatbot-container .message.user {
|
544 |
+
# # background: #E8F0FE;
|
545 |
+
# # border-radius: 12px 12px 0 12px;
|
546 |
+
# # }
|
547 |
+
|
548 |
+
# # .chatbot-container .message.bot {
|
549 |
+
# # background: #F5F7FF;
|
550 |
+
# # border-radius: 12px 12px 12px 0;
|
551 |
+
# # }
|
552 |
+
# # """
|
553 |
+
|
554 |
+
# # def create_ui():
|
555 |
+
# # """Create and configure the Gradio UI."""
|
556 |
+
# # with gr.Blocks(css=get_css(), theme=gr.themes.Soft()) as demo:
|
557 |
+
# # # Create a unique session ID for this browser tab
|
558 |
+
# # session_id = gr.State(value=f"session_{int(time.time())}_{os.urandom(4).hex()}")
|
559 |
+
|
560 |
+
# # # Registration section
|
561 |
+
# # with gr.Column(visible=True, elem_id="registration_container") as registration_container:
|
562 |
+
# # gr.Markdown(f"## Welcome to {APP_NAME}")
|
563 |
+
# # gr.Markdown("### Your privacy is important to us. Please provide a nickname to continue.")
|
564 |
+
|
565 |
+
# # with gr.Row():
|
566 |
+
# # first_name = gr.Textbox(
|
567 |
+
# # label="Nickname",
|
568 |
+
# # placeholder="Enter your nickname",
|
569 |
+
# # scale=1,
|
570 |
+
# # elem_id="input_nickname"
|
571 |
+
# # )
|
572 |
+
|
573 |
+
# # with gr.Row():
|
574 |
+
# # submit_btn = gr.Button("Start Chatting", variant="primary", scale=2)
|
575 |
+
|
576 |
+
# # response_message = gr.Markdown()
|
577 |
+
|
578 |
+
# # # Chatbot section (initially hidden)
|
579 |
+
# # with gr.Column(visible=False, elem_id="chatbot_container") as chatbot_container:
|
580 |
+
# # # Create a custom chat interface to pass session_id to our function
|
581 |
+
# # chatbot = gr.Chatbot(
|
582 |
+
# # elem_id="chatbot",
|
583 |
+
# # height=500,
|
584 |
+
# # show_label=False
|
585 |
+
# # )
|
586 |
+
|
587 |
+
# # with gr.Row():
|
588 |
+
# # msg = gr.Textbox(
|
589 |
+
# # placeholder="Type your message here...",
|
590 |
+
# # show_label=False,
|
591 |
+
# # container=False,
|
592 |
+
# # scale=9
|
593 |
+
# # )
|
594 |
+
# # submit = gr.Button("Send", scale=1, variant="primary")
|
595 |
|
596 |
+
# # examples = gr.Examples(
|
597 |
+
# # examples=[
|
598 |
+
# # "What resources are available for GBV victims?",
|
599 |
+
# # "How can I report an incident?",
|
600 |
+
# # "What are my legal rights?",
|
601 |
+
# # "I need help, what should I do first?"
|
602 |
+
# # ],
|
603 |
+
# # inputs=msg
|
604 |
+
# # )
|
605 |
+
|
606 |
+
# # # Footer with version info
|
607 |
+
# # gr.Markdown(f"{APP_NAME} {APP_VERSION} © 2025")
|
608 |
|
609 |
+
# # # Handle chat message submission
|
610 |
+
# # def respond(message, chat_history, session_id):
|
611 |
+
# # bot_message = ""
|
612 |
+
# # for chunk in rag_memory_stream(message, chat_history, session_id):
|
613 |
+
# # bot_message += chunk
|
614 |
+
# # chat_history.append((message, bot_message))
|
615 |
+
# # return "", chat_history
|
|
|
|
|
|
|
|
|
|
|
616 |
|
617 |
+
# # msg.submit(respond, [msg, chatbot, session_id], [msg, chatbot])
|
618 |
+
# # submit.click(respond, [msg, chatbot, session_id], [msg, chatbot])
|
619 |
+
|
620 |
+
# # # Handle user registration
|
621 |
+
# # submit_btn.click(
|
622 |
+
# # collect_user_info,
|
623 |
+
# # inputs=[first_name, session_id],
|
624 |
+
# # outputs=[response_message, chatbot_container, registration_container, chatbot]
|
625 |
+
# # )
|
626 |
+
|
627 |
+
# # return demo
|
628 |
+
|
629 |
+
# # def launch_app():
|
630 |
+
# # """Launch the Gradio interface."""
|
631 |
+
# # ui = create_ui()
|
632 |
+
# # ui.launch(share=True)
|
633 |
+
|
634 |
+
# # # Main execution
|
635 |
+
# # if __name__ == "__main__":
|
636 |
+
# # try:
|
637 |
+
# # # Initialize and launch the assistant
|
638 |
+
# # initialize_assistant()
|
639 |
+
# # launch_app()
|
640 |
+
# # except Exception as e:
|
641 |
+
# # import traceback
|
642 |
+
# # print(f"❌ Fatal error initializing GBV Assistant: {e}")
|
643 |
+
# # print(traceback.format_exc())
|
644 |
+
|
645 |
+
# # # Create a minimal emergency UI to display the error
|
646 |
+
# # with gr.Blocks() as error_demo:
|
647 |
+
# # gr.Markdown("## System Error")
|
648 |
+
# # gr.Markdown(f"An error occurred while initializing the application: {str(e)}")
|
649 |
+
# # gr.Markdown("Please check your configuration and try again.")
|
650 |
|
651 |
+
# # error_demo.launch(share=True, inbrowser=True, debug=True)
|
|
|
652 |
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
|
|
|
654 |
|
655 |
+
# ############################################################################################################
|
|
|
|
|
|
|
656 |
|
657 |
+
|
658 |
+
# import os
|
659 |
+
# from langchain_groq import ChatGroq
|
660 |
+
# from langchain.prompts import ChatPromptTemplate, PromptTemplate
|
661 |
+
# from langchain.output_parsers import ResponseSchema, StructuredOutputParser
|
662 |
+
# from urllib.parse import urljoin, urlparse
|
663 |
+
# import requests
|
664 |
+
# from io import BytesIO
|
665 |
+
# from langchain_chroma import Chroma
|
666 |
+
# import requests
|
667 |
+
# from bs4 import BeautifulSoup
|
668 |
+
# from langchain_core.prompts import ChatPromptTemplate
|
669 |
+
# import gradio as gr
|
670 |
+
# from PyPDF2 import PdfReader
|
671 |
+
# from langchain_huggingface import HuggingFaceEmbeddings
|
672 |
+
|
673 |
+
# groq_api_key= os.environ.get('GBV')
|
674 |
+
|
675 |
+
# embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
676 |
+
|
677 |
+
# def scrape_websites(base_urls):
|
678 |
# try:
|
679 |
+
# visited_links = set() # To avoid revisiting the same link
|
680 |
+
# content_by_url = {} # Store content from each URL
|
681 |
+
|
682 |
+
# for base_url in base_urls:
|
683 |
+
# if not base_url.strip():
|
684 |
+
# continue # Skip empty or invalid URLs
|
685 |
+
|
686 |
+
# print(f"Scraping base URL: {base_url}")
|
687 |
+
# html_content = fetch_page_content(base_url)
|
688 |
+
# if html_content:
|
689 |
+
# cleaned_content = clean_body_content(html_content)
|
690 |
+
# content_by_url[base_url] = cleaned_content
|
691 |
+
# visited_links.add(base_url)
|
692 |
+
|
693 |
+
# # Extract and process all internal links
|
694 |
+
# soup = BeautifulSoup(html_content, "html.parser")
|
695 |
+
# links = extract_internal_links(base_url, soup)
|
696 |
+
|
697 |
+
# for link in links:
|
698 |
+
# if link not in visited_links:
|
699 |
+
# print(f"Scraping link: {link}")
|
700 |
+
# page_content = fetch_page_content(link)
|
701 |
+
# if page_content:
|
702 |
+
# cleaned_content = clean_body_content(page_content)
|
703 |
+
# content_by_url[link] = cleaned_content
|
704 |
+
# visited_links.add(link)
|
705 |
+
|
706 |
+
# # If the link is a PDF file, extract its content
|
707 |
+
# if link.lower().endswith('.pdf'):
|
708 |
+
# print(f"Extracting PDF content from: {link}")
|
709 |
+
# pdf_content = extract_pdf_text(link)
|
710 |
+
# if pdf_content:
|
711 |
+
# content_by_url[link] = pdf_content
|
712 |
+
|
713 |
+
# return content_by_url
|
714 |
+
|
715 |
# except Exception as e:
|
716 |
+
# print(f"Error during scraping: {e}")
|
717 |
+
# return {}
|
718 |
+
|
719 |
+
|
720 |
+
# def fetch_page_content(url):
|
721 |
+
# try:
|
722 |
+
# response = requests.get(url, timeout=10)
|
723 |
+
# response.raise_for_status()
|
724 |
+
# return response.text
|
725 |
+
# except requests.exceptions.RequestException as e:
|
726 |
+
# print(f"Error fetching {url}: {e}")
|
727 |
+
# return None
|
728 |
+
|
729 |
+
|
730 |
+
# def extract_internal_links(base_url, soup):
|
731 |
+
# links = set()
|
732 |
+
# for anchor in soup.find_all("a", href=True):
|
733 |
+
# href = anchor["href"]
|
734 |
+
# full_url = urljoin(base_url, href)
|
735 |
+
# if is_internal_link(base_url, full_url):
|
736 |
+
# links.add(full_url)
|
737 |
+
# return links
|
738 |
+
|
739 |
|
740 |
+
# def is_internal_link(base_url, link_url):
|
741 |
+
# base_netloc = urlparse(base_url).netloc
|
742 |
+
# link_netloc = urlparse(link_url).netloc
|
743 |
+
# return base_netloc == link_netloc
|
744 |
|
745 |
|
746 |
+
# def extract_pdf_text(pdf_url):
|
747 |
+
# try:
|
748 |
+
# response = requests.get(pdf_url)
|
749 |
+
# response.raise_for_status()
|
750 |
+
# with BytesIO(response.content) as file:
|
751 |
+
# reader = PdfReader(file)
|
752 |
+
# pdf_text = ""
|
753 |
+
# for page in reader.pages:
|
754 |
+
# pdf_text += page.extract_text()
|
755 |
+
|
756 |
+
# return pdf_text if pdf_text else None
|
757 |
+
# except requests.exceptions.RequestException as e:
|
758 |
+
# print(f"Error fetching PDF {pdf_url}: {e}")
|
759 |
+
# return None
|
760 |
+
# except Exception as e:
|
761 |
+
# print(f"Error reading PDF {pdf_url}: {e}")
|
762 |
+
# return None
|
763 |
+
|
764 |
|
765 |
+
# def clean_body_content(html_content):
|
766 |
+
# soup = BeautifulSoup(html_content, "html.parser")
|
767 |
+
|
768 |
+
|
769 |
+
# for script_or_style in soup(["script", "style"]):
|
770 |
+
# script_or_style.extract()
|
771 |
+
|
772 |
+
|
773 |
+
# cleaned_content = soup.get_text(separator="\n")
|
774 |
+
# cleaned_content = "\n".join(
|
775 |
+
# line.strip() for line in cleaned_content.splitlines() if line.strip()
|
776 |
+
# )
|
777 |
+
# return cleaned_content
|
778 |
+
|
779 |
+
|
780 |
+
# if __name__ == "__main__":
|
781 |
+
# website = ["https://haguruka.org.rw/"
|
782 |
+
|
783 |
+
# ]
|
784 |
+
# all_content = scrape_websites(website)
|
785 |
+
|
786 |
+
# temp_list = []
|
787 |
+
# for url, content in all_content.items():
|
788 |
+
# temp_list.append((url, content))
|
789 |
+
|
790 |
+
|
791 |
+
# processed_texts = []
|
792 |
+
|
793 |
+
|
794 |
+
# for element in temp_list:
|
795 |
+
# if isinstance(element, tuple):
|
796 |
+
# url, content = element
|
797 |
+
# processed_texts.append(f"url: {url}, content: {content}")
|
798 |
+
# elif isinstance(element, str):
|
799 |
+
# processed_texts.append(element)
|
800 |
+
# else:
|
801 |
+
# processed_texts.append(str(element))
|
802 |
+
|
803 |
+
# def chunk_string(s, chunk_size=1000):
|
804 |
+
# return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
|
805 |
+
|
806 |
+
# chunked_texts = []
|
807 |
+
|
808 |
+
# for text in processed_texts:
|
809 |
+
# chunked_texts.extend(chunk_string(text))
|
810 |
+
|
811 |
+
|
812 |
+
|
813 |
+
|
814 |
+
|
815 |
+
# vectorstore = Chroma(
|
816 |
+
# collection_name="GBVR_Dataset",
|
817 |
+
# embedding_function=embed_model,
|
818 |
+
# persist_directory="./",
|
819 |
+
# )
|
820 |
+
|
821 |
+
# vectorstore.get().keys()
|
822 |
+
|
823 |
+
# vectorstore.add_texts(chunked_texts)
|
824 |
+
|
825 |
+
|
826 |
+
# template = ("""
|
827 |
+
# You are a friendly, intelligent, and conversational AI assistant designed to provide accurate, engaging, and human-like responses based on the given context. Your goal is to extract relevant details from the provided context: {context} and assist the user effectively. Follow these guidelines:
|
828 |
+
|
829 |
+
# 1. **Warm & Natural Interaction**
|
830 |
+
# - If the user greets you (e.g., "Hello," "Hi," "Good morning"), respond warmly and acknowledge them.
|
831 |
+
# - Example responses:
|
832 |
+
# - "😊 Good morning! How can I assist you today?"
|
833 |
+
# - "Hello! What can I do for you? 🚀"
|
834 |
+
|
835 |
+
# 2. **Precise Information Extraction**
|
836 |
+
# - Provide only the relevant details from the given context: {context}.
|
837 |
+
# - Do not generate extra content or assumptions beyond the provided information.
|
838 |
+
|
839 |
+
# 3. **Conversational & Engaging Tone**
|
840 |
+
# - Keep responses friendly, natural, and engaging.
|
841 |
+
# - Use occasional emojis (e.g., 😊, 🚀) to make interactions more lively.
|
842 |
+
|
843 |
+
# 4. **Awareness of Real-Time Context**
|
844 |
+
# - If necessary, acknowledge the current date and time to show awareness of real-world updates.
|
845 |
+
|
846 |
+
# 5. **Handling Missing Information**
|
847 |
+
# - If no relevant information exists in the context, respond politely:
|
848 |
+
# - "I don't have that information at the moment, but I'm happy to help with something else! 😊"
|
849 |
+
|
850 |
+
# 6. **Personalized Interaction**
|
851 |
+
# - If user history is available, tailor responses based on their previous interactions for a more natural and engaging conversation.
|
852 |
+
|
853 |
+
# 7. **Direct, Concise Responses**
|
854 |
+
# - If the user requests specific data, provide only the requested details without unnecessary explanations unless asked.
|
855 |
+
|
856 |
+
# 8. **Extracting Relevant Links**
|
857 |
+
# - If the user asks for a link related to their request `{question}`, extract the most relevant URL from `{context}` and provide it directly.
|
858 |
+
# - Example response:
|
859 |
+
# - "Here is the link you requested: [URL]"
|
860 |
+
|
861 |
+
# **Context:** {context}
|
862 |
+
# **User's Question:** {question}
|
863 |
+
# **Your Response:**
|
864 |
+
# """)
|
865 |
+
|
866 |
+
|
867 |
+
# rag_prompt = PromptTemplate.from_template(template)
|
868 |
+
|
869 |
+
# retriever = vectorstore.as_retriever()
|
870 |
+
|
871 |
+
# from langchain_core.output_parsers import StrOutputParser
|
872 |
+
# from langchain_core.runnables import RunnablePassthrough
|
873 |
+
|
874 |
+
# llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_api_key )
|
875 |
+
|
876 |
+
# rag_chain = (
|
877 |
+
# {"context": retriever, "question": RunnablePassthrough()}
|
878 |
+
# | rag_prompt
|
879 |
+
# | llm
|
880 |
+
# | StrOutputParser()
|
881 |
+
# )
|
882 |
+
|
883 |
+
|
884 |
+
# # Define the RAG memory stream function
|
885 |
+
# def rag_memory_stream(message, history):
|
886 |
+
# partial_text = ""
|
887 |
+
# for new_text in rag_chain.stream(message): # Replace with actual streaming logic
|
888 |
+
# partial_text += new_text
|
889 |
+
# yield partial_text
|
890 |
+
|
891 |
+
# # Title with emojis
|
892 |
+
# title = "GBVR Chatbot"
|
893 |
+
|
894 |
+
|
895 |
+
# # Custom CSS for styling the interface
|
896 |
+
# custom_css = """
|
897 |
+
# body {
|
898 |
+
# font-family: "Arial", serif;
|
899 |
+
# }
|
900 |
+
# .gradio-container {
|
901 |
+
# font-family: "Times New Roman", serif;
|
902 |
+
# }
|
903 |
+
# .gr-button {
|
904 |
+
# background-color: #007bff; /* Blue button */
|
905 |
+
# color: white;
|
906 |
+
# border: none;
|
907 |
+
# border-radius: 5px;
|
908 |
+
# font-size: 16px;
|
909 |
+
# padding: 10px 20px;
|
910 |
+
# cursor: pointer;
|
911 |
+
# }
|
912 |
+
# .gr-textbox:focus, .gr-button:focus {
|
913 |
+
# outline: none; /* Remove outline focus for a cleaner look */
|
914 |
+
# }
|
915 |
+
|
916 |
+
# """
|
917 |
+
|
918 |
+
# # Create the Chat Interface
|
919 |
+
# demo = gr.ChatInterface(
|
920 |
+
# fn=rag_memory_stream,
|
921 |
+
# title=title,
|
922 |
+
# fill_height=True,
|
923 |
+
# theme="soft",
|
924 |
+
# css=custom_css, # Apply the custom CSS
|
925 |
+
# )
|
926 |
+
|
927 |
+
# # Launch the app
|
928 |
+
# if __name__ == "__main__":
|
929 |
+
# demo.launch(share=True, inbrowser=True, debug=True)
|
930 |
|
931 |
import os
|
932 |
from langchain_groq import ChatGroq
|
|
|
942 |
import gradio as gr
|
943 |
from PyPDF2 import PdfReader
|
944 |
from langchain_huggingface import HuggingFaceEmbeddings
|
945 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
946 |
+
from langchain_core.runnables import RunnablePassthrough
|
947 |
+
from langchain_core.output_parsers import StrOutputParser
|
948 |
|
949 |
+
# Set up environment variables
|
950 |
+
groq_api_key = os.environ.get('GBV')
|
951 |
|
952 |
+
# Initialize embedding model
|
953 |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
954 |
|
955 |
def scrape_websites(base_urls):
|
|
|
1042 |
|
1043 |
def clean_body_content(html_content):
|
1044 |
soup = BeautifulSoup(html_content, "html.parser")
|
|
|
1045 |
|
1046 |
+
# Remove scripts and styles
|
1047 |
for script_or_style in soup(["script", "style"]):
|
1048 |
script_or_style.extract()
|
|
|
1049 |
|
1050 |
+
# Get cleaned text
|
1051 |
cleaned_content = soup.get_text(separator="\n")
|
1052 |
cleaned_content = "\n".join(
|
1053 |
line.strip() for line in cleaned_content.splitlines() if line.strip()
|
|
|
1055 |
return cleaned_content
|
1056 |
|
1057 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1058 |
def chunk_string(s, chunk_size=1000):
|
1059 |
return [s[i:i+chunk_size] for i in range(0, len(s), chunk_size)]
|
1060 |
|
|
|
1061 |
|
1062 |
+
# Setup vectorstore for RAG
|
1063 |
+
def setup_vectorstore():
|
1064 |
+
if __name__ == "__main__":
|
1065 |
+
website = ["https://haguruka.org.rw/"]
|
1066 |
+
all_content = scrape_websites(website)
|
1067 |
|
1068 |
+
temp_list = []
|
1069 |
+
for url, content in all_content.items():
|
1070 |
+
temp_list.append((url, content))
|
1071 |
|
1072 |
+
processed_texts = []
|
1073 |
+
|
1074 |
+
for element in temp_list:
|
1075 |
+
if isinstance(element, tuple):
|
1076 |
+
url, content = element
|
1077 |
+
processed_texts.append(f"url: {url}, content: {content}")
|
1078 |
+
elif isinstance(element, str):
|
1079 |
+
processed_texts.append(element)
|
1080 |
+
else:
|
1081 |
+
processed_texts.append(str(element))
|
1082 |
+
|
1083 |
+
chunked_texts = []
|
1084 |
+
for text in processed_texts:
|
1085 |
+
chunked_texts.extend(chunk_string(text))
|
1086 |
+
|
1087 |
+
vectorstore = Chroma(
|
1088 |
+
collection_name="GBVR_Dataset",
|
1089 |
+
embedding_function=embed_model,
|
1090 |
+
persist_directory="./",
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
vectorstore.add_texts(chunked_texts)
|
1094 |
+
return vectorstore
|
1095 |
+
else:
|
1096 |
+
# If imported as a module, just load the existing vectorstore
|
1097 |
+
vectorstore = Chroma(
|
1098 |
+
collection_name="GBVR_Dataset",
|
1099 |
+
embedding_function=embed_model,
|
1100 |
+
persist_directory="./",
|
1101 |
+
)
|
1102 |
+
return vectorstore
|
1103 |
+
|
1104 |
+
|
1105 |
+
# Session Manager class to handle conversation history
|
1106 |
+
class SessionManager:
|
1107 |
+
def __init__(self):
|
1108 |
+
self.sessions = {}
|
1109 |
|
1110 |
+
def get_session(self, session_id):
|
1111 |
+
if session_id not in self.sessions:
|
1112 |
+
self.sessions[session_id] = []
|
1113 |
+
return self.sessions[session_id]
|
1114 |
+
|
1115 |
+
def add_message(self, session_id, role, content):
|
1116 |
+
session = self.get_session(session_id)
|
1117 |
+
if role == "human":
|
1118 |
+
session.append(HumanMessage(content=content))
|
1119 |
+
elif role == "ai":
|
1120 |
+
session.append(AIMessage(content=content))
|
1121 |
+
|
1122 |
+
def get_history_as_string(self, session_id, max_turns=5):
|
1123 |
+
"""Convert recent conversation history to string format for context"""
|
1124 |
+
session = self.get_session(session_id)
|
1125 |
+
|
1126 |
+
# Get the most recent conversations (limited to max_turns)
|
1127 |
+
recent_messages = session[-max_turns*2:] if len(session) > max_turns*2 else session
|
1128 |
+
|
1129 |
+
history_str = ""
|
1130 |
+
for msg in recent_messages:
|
1131 |
+
role = "User" if isinstance(msg, HumanMessage) else "Assistant"
|
1132 |
+
history_str += f"{role}: {msg.content}\n"
|
1133 |
+
|
1134 |
+
return history_str.strip()
|
1135 |
|
1136 |
|
1137 |
+
# Initialize session manager
|
1138 |
+
session_manager = SessionManager()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1139 |
|
1140 |
+
# Modified template to include conversation history
|
1141 |
+
template = """
|
1142 |
+
You are a friendly, intelligent, and conversational AI assistant designed to provide accurate, engaging, and human-like responses based on the given context. Your goal is to extract relevant details from the provided context and assist the user effectively. Follow these guidelines:
|
1143 |
|
1144 |
1. **Warm & Natural Interaction**
|
1145 |
- If the user greets you (e.g., "Hello," "Hi," "Good morning"), respond warmly and acknowledge them.
|
|
|
1148 |
- "Hello! What can I do for you? 🚀"
|
1149 |
|
1150 |
2. **Precise Information Extraction**
|
1151 |
+
- Provide only the relevant details from the given context.
|
1152 |
- Do not generate extra content or assumptions beyond the provided information.
|
1153 |
|
1154 |
3. **Conversational & Engaging Tone**
|
|
|
1163 |
- "I don't have that information at the moment, but I'm happy to help with something else! 😊"
|
1164 |
|
1165 |
6. **Personalized Interaction**
|
1166 |
+
- Use the conversation history to provide more personalized and contextually relevant responses.
|
1167 |
|
1168 |
7. **Direct, Concise Responses**
|
1169 |
- If the user requests specific data, provide only the requested details without unnecessary explanations unless asked.
|
1170 |
|
1171 |
8. **Extracting Relevant Links**
|
1172 |
+
- If the user asks for a link related to their request, extract the most relevant URL from the context and provide it directly.
|
1173 |
- Example response:
|
1174 |
- "Here is the link you requested: [URL]"
|
1175 |
|
1176 |
+
**Context from knowledge base:** {context}
|
1177 |
+
|
1178 |
+
**Previous conversation history:**
|
1179 |
+
{history}
|
1180 |
+
|
1181 |
+
**Current User's Question:** {question}
|
1182 |
+
|
1183 |
+
**Your Response:**
|
1184 |
+
"""
|
1185 |
|
1186 |
+
# Create prompt template with history
|
1187 |
rag_prompt = PromptTemplate.from_template(template)
|
1188 |
|
1189 |
+
# Initialize Groq LLM
|
1190 |
+
llm = ChatGroq(model="llama-3.3-70b-versatile", api_key=groq_api_key)
|
|
|
|
|
1191 |
|
1192 |
+
# Define the RAG chain with session history
|
1193 |
+
def get_rag_chain(vectorstore):
|
1194 |
+
retriever = vectorstore.as_retriever()
|
1195 |
+
|
1196 |
+
def rag_chain_with_history(query, session_id):
|
1197 |
+
# Get conversation history
|
1198 |
+
history = session_manager.get_history_as_string(session_id)
|
1199 |
+
|
1200 |
+
# Get relevant documents from retriever
|
1201 |
+
retrieved_docs = retriever.invoke(query)
|
1202 |
+
context = "\n".join([doc.page_content for doc in retrieved_docs])
|
1203 |
+
|
1204 |
+
# Create the prompt with context and history
|
1205 |
+
prompt = rag_prompt.format(
|
1206 |
+
context=context,
|
1207 |
+
history=history,
|
1208 |
+
question=query
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
# Generate response
|
1212 |
+
response = llm.invoke(prompt)
|
1213 |
+
|
1214 |
+
# Add to session history
|
1215 |
+
session_manager.add_message(session_id, "human", query)
|
1216 |
+
session_manager.add_message(session_id, "ai", response.content)
|
1217 |
+
|
1218 |
+
return response.content
|
1219 |
+
|
1220 |
+
return rag_chain_with_history
|
1221 |
|
1222 |
+
# Initialize the vectorstore
|
1223 |
+
vectorstore = setup_vectorstore()
|
|
|
|
|
|
|
|
|
1224 |
|
1225 |
+
# Get the RAG chain
|
1226 |
+
rag_chain_fn = get_rag_chain(vectorstore)
|
1227 |
|
1228 |
+
# Define the streaming function for Gradio
|
1229 |
+
def rag_memory_stream(message, history, session_id=None):
|
1230 |
+
if session_id is None:
|
1231 |
+
# Generate a simple session ID if none provided
|
1232 |
+
# In a production app, you would use something more sophisticated
|
1233 |
+
session_id = "default_session"
|
1234 |
+
|
1235 |
+
# Process the message and get the response
|
1236 |
+
response = rag_chain_fn(message, session_id)
|
1237 |
+
|
1238 |
+
# Stream the response word by word
|
1239 |
+
words = response.split()
|
1240 |
+
partial_response = ""
|
1241 |
+
|
1242 |
+
for word in words:
|
1243 |
+
partial_response += word + " "
|
1244 |
+
yield partial_response.strip()
|
1245 |
+
|
1246 |
+
# Create the Chat Interface with session management
|
1247 |
+
def create_chat_interface():
|
1248 |
+
with gr.Blocks(theme="soft", css=custom_css) as demo:
|
1249 |
+
gr.Markdown(f"# {title}")
|
1250 |
+
|
1251 |
+
# Hidden session ID - in a real app, this would be managed by authentication
|
1252 |
+
session_id = gr.State(value="default_session")
|
1253 |
+
|
1254 |
+
chatbot = gr.Chatbot(height=600)
|
1255 |
+
msg = gr.Textbox(
|
1256 |
+
placeholder="Ask me anything about GBV resources...",
|
1257 |
+
container=False,
|
1258 |
+
scale=7
|
1259 |
+
)
|
1260 |
+
|
1261 |
+
def user_input(message, chat_history, session_id_val):
|
1262 |
+
if message.strip() == "":
|
1263 |
+
return "", chat_history
|
1264 |
+
|
1265 |
+
chat_history.append([message, None])
|
1266 |
+
return "", chat_history
|
1267 |
+
|
1268 |
+
def bot_response(chat_history, session_id_val):
|
1269 |
+
if chat_history and chat_history[-1][1] is None:
|
1270 |
+
user_message = chat_history[-1][0]
|
1271 |
+
bot_message = ""
|
1272 |
+
|
1273 |
+
for chunk in rag_memory_stream(user_message, chat_history, session_id_val):
|
1274 |
+
bot_message = chunk
|
1275 |
+
chat_history[-1][1] = bot_message
|
1276 |
+
yield chat_history
|
1277 |
+
|
1278 |
+
send = gr.Button("Send", variant="primary", scale=1)
|
1279 |
+
clear = gr.Button("Clear Chat", variant="secondary")
|
1280 |
+
|
1281 |
+
# Event handlers
|
1282 |
+
send_event = msg.submit(user_input, [msg, chatbot, session_id], [msg, chatbot]).then(
|
1283 |
+
bot_response, [chatbot, session_id], chatbot
|
1284 |
+
)
|
1285 |
+
send.click(user_input, [msg, chatbot, session_id], [msg, chatbot]).then(
|
1286 |
+
bot_response, [chatbot, session_id], chatbot
|
1287 |
+
)
|
1288 |
+
clear.click(lambda: [], outputs=[chatbot])
|
1289 |
+
|
1290 |
+
return demo
|
1291 |
|
1292 |
# Title with emojis
|
1293 |
+
title = "🤖 GBVR Chatbot"
|
|
|
1294 |
|
1295 |
# Custom CSS for styling the interface
|
1296 |
custom_css = """
|
|
|
1312 |
.gr-textbox:focus, .gr-button:focus {
|
1313 |
outline: none; /* Remove outline focus for a cleaner look */
|
1314 |
}
|
|
|
1315 |
"""
|
1316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1317 |
# Launch the app
|
1318 |
if __name__ == "__main__":
|
1319 |
+
demo = create_chat_interface()
|
1320 |
demo.launch(share=True, inbrowser=True, debug=True)
|