Spaces:
No application file
No application file
from dotenv import load_dotenv | |
import os | |
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS #facebook AI similarity search | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain import HuggingFaceHub | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Ask your PDF") | |
st.header("Ask Your PDF") | |
pdf = st.file_uploader("Upload your pdf",type="pdf") | |
if pdf is not None: | |
pdf_reader = PdfReader(pdf) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
# spilit ito chuncks | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
# create embedding | |
embeddings = HuggingFaceEmbeddings() | |
knowledge_base = FAISS.from_texts(chunks,embeddings) | |
user_question = st.text_input("Ask Question about your PDF:") | |
if user_question: | |
docs = knowledge_base.similarity_search(user_question) | |
llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":5, | |
"max_length":64}) | |
chain = load_qa_chain(llm,chain_type="stuff") | |
response = chain.run(input_documents=docs,question=user_question) | |
st.write(response) | |
# st.write(chunks) | |
if __name__ == '__main__': | |
main() |