from dotenv import load_dotenv import os import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS #facebook AI similarity search from langchain.chains.question_answering import load_qa_chain from langchain import HuggingFaceHub def main(): load_dotenv() st.set_page_config(page_title="Ask your PDF") st.header("Ask Your PDF") pdf = st.file_uploader("Upload your pdf",type="pdf") if pdf is not None: pdf_reader = PdfReader(pdf) text = "" for page in pdf_reader.pages: text += page.extract_text() # spilit ito chuncks text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) # create embedding embeddings = HuggingFaceEmbeddings() knowledge_base = FAISS.from_texts(chunks,embeddings) user_question = st.text_input("Ask Question about your PDF:") if user_question: docs = knowledge_base.similarity_search(user_question) llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":5, "max_length":64}) chain = load_qa_chain(llm,chain_type="stuff") response = chain.run(input_documents=docs,question=user_question) st.write(response) # st.write(chunks) if __name__ == '__main__': main()