Spaces:
No application file
No application file
File size: 1,674 Bytes
380829c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
from dotenv import load_dotenv
import os
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS #facebook AI similarity search
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
def main():
load_dotenv()
st.set_page_config(page_title="Ask your PDF")
st.header("Ask Your PDF")
pdf = st.file_uploader("Upload your pdf",type="pdf")
if pdf is not None:
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# spilit ito chuncks
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
# create embedding
embeddings = HuggingFaceEmbeddings()
knowledge_base = FAISS.from_texts(chunks,embeddings)
user_question = st.text_input("Ask Question about your PDF:")
if user_question:
docs = knowledge_base.similarity_search(user_question)
llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature":5,
"max_length":64})
chain = load_qa_chain(llm,chain_type="stuff")
response = chain.run(input_documents=docs,question=user_question)
st.write(response)
# st.write(chunks)
if __name__ == '__main__':
main() |