File size: 10,359 Bytes
76736a8
76c6b8a
94312f3
 
76c6b8a
 
94312f3
 
 
76736a8
94312f3
 
 
 
 
 
76c6b8a
94312f3
76c6b8a
 
 
 
76736a8
 
 
76c6b8a
 
76736a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef07f3f
76c6b8a
ef07f3f
 
 
 
8e8e221
76c6b8a
 
76736a8
 
76c6b8a
8e8e221
76c6b8a
ef07f3f
76c6b8a
 
 
76736a8
 
 
 
 
 
 
 
 
15cef53
76c6b8a
76736a8
 
 
 
 
 
 
 
ef07f3f
76736a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c6b8a
 
76736a8
 
 
 
76c6b8a
76736a8
ef07f3f
76736a8
 
 
 
 
 
 
 
 
 
 
 
76c6b8a
 
ef07f3f
76c6b8a
76736a8
 
 
 
 
15cef53
76c6b8a
76736a8
 
 
 
 
 
 
 
 
 
 
 
76c6b8a
 
76736a8
 
 
 
76c6b8a
76736a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c6b8a
76736a8
76c6b8a
8e8e221
 
76736a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef07f3f
76736a8
 
 
 
76c6b8a
76736a8
 
 
 
 
 
8517cbd
76c6b8a
8517cbd
 
76736a8
 
76c6b8a
ef07f3f
 
76c6b8a
 
76736a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e8e221
76c6b8a
76736a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Install required packages
import os
import subprocess
import sys
import importlib
import pkg_resources

def install_package(package, version=None):
    package_spec = f"{package}=={version}" if version else package
    print(f"Installing {package_spec}...")
    try:
        subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
    except subprocess.CalledProcessError as e:
        print(f"Failed to install {package_spec}: {e}")
        raise

def ensure_package(package, version=None):
    try:
        if version:
            pkg_resources.require(f"{package}=={version}")
        else:
            importlib.import_module(package)
        print(f"{package} is already installed with the correct version.")
    except (ImportError, pkg_resources.VersionConflict, pkg_resources.DistributionNotFound) as e:
        print(f"Package requirement failed: {e}")
        install_package(package, version)

# Check if running in a standard environment (not Colab/Jupyter)
if not os.path.exists("/.dockerenv") and not os.path.exists("/kaggle"):
    print("Setting up environment...")
    
    # Install packages in the correct order with compatible versions
    ensure_package("numpy", "1.23.5")  # Compatible with TensorFlow 2.10
    ensure_package("protobuf", "3.20.3")  # Critical for TensorFlow compatibility
    ensure_package("tensorflow", "2.10.0")  # Stable version with good compatibility
    
    # Install core dependencies
    for pkg in ["gradio", "opencv-python-headless", "matplotlib", "pillow", "pandas"]:
        ensure_package(pkg)
    
    # Install deepface last after all dependencies are set up
    ensure_package("deepface")

# Now import the required modules
import gradio as gr
import json
import cv2
import numpy as np
from PIL import Image
import tempfile
import pandas as pd
import shutil
import matplotlib.pyplot as plt

# Import DeepFace after ensuring dependencies are properly installed
from deepface import DeepFace

def verify_faces(img1, img2, threshold=0.70, model="VGG-Face"):
    temp_dir = tempfile.mkdtemp()
    img1_path = os.path.join(temp_dir, "image1.jpg")
    img2_path = os.path.join(temp_dir, "image2.jpg")

    if isinstance(img1, np.ndarray):
        Image.fromarray(img1).save(img1_path)
    else:
        img1.save(img1_path)

    if isinstance(img2, np.ndarray):
        Image.fromarray(img2).save(img2_path)
    else:
        img2.save(img2_path)

    try:
        result = DeepFace.verify(
            img1_path=img1_path,
            img2_path=img2_path,
            model_name=model,
            distance_metric="cosine",
            threshold=threshold
        )

        fig, ax = plt.subplots(1, 2, figsize=(10, 5))

        img1_display = cv2.imread(img1_path)
        img1_display = cv2.cvtColor(img1_display, cv2.COLOR_BGR2RGB)
        img2_display = cv2.imread(img2_path)
        img2_display = cv2.cvtColor(img2_display, cv2.COLOR_BGR2RGB)

        ax[0].imshow(img1_display)
        ax[0].set_title("Image 1")
        ax[0].axis("off")

        ax[1].imshow(img2_display)
        ax[1].set_title("Image 2")
        ax[1].axis("off")

        verification_result = "βœ… FACE MATCHED" if result["verified"] else "❌ FACE NOT MATCHED"
        confidence = round((1 - result["distance"]) * 100, 2)

        plt.suptitle(f"{verification_result}\nConfidence: {confidence}%\nDistance: {result['distance']:.4f}",
                    fontsize=16, fontweight='bold',
                    color='green' if result["verified"] else 'red')

        plt.tight_layout()

        os.remove(img1_path)
        os.remove(img2_path)
        os.rmdir(temp_dir)

        return fig, json.dumps(result, indent=2)

    except Exception as e:
        if os.path.exists(img1_path):
            os.remove(img1_path)
        if os.path.exists(img2_path):
            os.remove(img2_path)
        if os.path.exists(temp_dir):
            os.rmdir(temp_dir)

        error_msg = f"Error: {str(e)}"
        if "No face detected" in str(e):
            error_msg = "No face detected in one or both images. Please try different images."

        return None, error_msg

def analyze_face(img, actions=['age', 'gender', 'race', 'emotion']):
    temp_dir = tempfile.mkdtemp()
    img_path = os.path.join(temp_dir, "analyze.jpg")

    if isinstance(img, np.ndarray):
        Image.fromarray(img).save(img_path)
    else:
        img.save(img_path)

    try:
        results = DeepFace.analyze(
            img_path=img_path,
            actions=actions,
            enforce_detection=True,
            detector_backend='opencv'
        )

        if isinstance(results, list):
            num_faces = len(results)
        else:
            num_faces = 1
            results = [results]

        fig = plt.figure(figsize=(14, 7))

        img_display = cv2.imread(img_path)
        img_display = cv2.cvtColor(img_display, cv2.COLOR_BGR2RGB)

        main_ax = plt.subplot2grid((2, 4), (0, 0), colspan=2, rowspan=2)
        main_ax.imshow(img_display)
        main_ax.set_title(f"Analyzed Image ({num_faces} face{'s' if num_faces > 1 else ''} detected)")
        main_ax.axis('off')

        for i, face_result in enumerate(results):
            if i >= 4:
                break

            age = face_result.get('age', 'N/A')
            gender = face_result.get('dominant_gender', 'N/A')
            race = face_result.get('dominant_race', 'N/A')
            emotion = face_result.get('dominant_emotion', 'N/A')

            gender_conf = 'N/A'
            if 'gender' in face_result and isinstance(face_result['gender'], dict):
                for g, conf in face_result['gender'].items():
                    if g.lower() == gender.lower():
                        gender_conf = f"{conf:.1f}%"
                        break

            race_conf = 'N/A'
            if 'race' in face_result and isinstance(face_result['race'], dict):
                for r, conf in face_result['race'].items():
                    if r.lower() == race.lower():
                        race_conf = f"{conf:.1f}%"
                        break

            emotion_conf = 'N/A'
            if 'emotion' in face_result and isinstance(face_result['emotion'], dict):
                for e, conf in face_result['emotion'].items():
                    if e.lower() == emotion.lower():
                        emotion_conf = f"{conf:.1f}%"
                        break

            ax = plt.subplot2grid((2, 4), (0 if i < 2 else 1, 2 + (i % 2)))

            text = (
                f"Face #{i+1}\n\n"
                f"Age: {age}\n\n"
                f"Gender: {gender} ({gender_conf})\n\n"
                f"Race: {race} ({race_conf})\n\n"
                f"Emotion: {emotion} ({emotion_conf})"
            )

            ax.text(0.5, 0.5, text, ha='center', va='center', fontsize=11)
            ax.axis('off')

        plt.tight_layout()

        os.remove(img_path)
        os.rmdir(temp_dir)

        formatted_results = []
        for i, res in enumerate(results[:8]):
            face_data = {
                "face_number": i+1,
                "age": res.get("age", "N/A"),
                "gender": {
                    "dominant": res.get("dominant_gender", "N/A"),
                    "confidence": res.get("gender", {})
                },
                "race": {
                    "dominant": res.get("dominant_race", "N/A"),
                    "confidence": res.get("race", {})
                },
                "emotion": {
                    "dominant": res.get("dominant_emotion", "N/A"),
                    "confidence": res.get("emotion", {})
                }
            }
            formatted_results.append(face_data)

        return fig, formatted_results

    except Exception as e:
        if os.path.exists(img_path):
            os.remove(img_path)
        if os.path.exists(temp_dir):
            os.rmdir(temp_dir)

        error_msg = f"Error: {str(e)}"
        if "No face detected" in str(e):
            error_msg = "No face detected in the image. Please try a different image."

        return None, error_msg

with gr.Blocks(title="Face Recognition Tool", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # πŸ” Face Recognition Tool
    This tool provides two main features:
    - **Verify Faces**: Compare two specific images to check if they contain the same person
    - **Analyze Face**: Determine age, gender, race, and emotion from a facial image
    """)

    with gr.Tabs():
        with gr.TabItem("Verify Faces"):
            with gr.Row():
                img1_input = gr.Image(label="First Image", type="pil")
                img2_input = gr.Image(label="Second Image", type="pil")

            with gr.Row():
                verify_threshold = gr.Slider(minimum=0.1, maximum=0.9, value=0.6, step=0.05,
                                       label="Similarity Threshold (lower = stricter matching)")
                verify_model = gr.Dropdown(
                    choices=["VGG-Face", "Facenet", "OpenFace", "DeepFace", "ArcFace"],
                    value="VGG-Face",
                    label="Face Recognition Model"
                )

            verify_button = gr.Button("Verify Faces", variant="primary")

            verify_result_plot = gr.Plot(label="Verification Result")
            verify_json = gr.JSON(label="Technical Details")

            verify_button.click(
                verify_faces,
                inputs=[img1_input, img2_input, verify_threshold, verify_model],
                outputs=[verify_result_plot, verify_json]
            )

        with gr.TabItem("Analyze Face"):
            analyze_img = gr.Image(label="Upload Image for Analysis", type="pil")
            actions_checkboxes = gr.CheckboxGroup(
                choices=["age", "gender", "race", "emotion"],
                value=["age", "gender", "race", "emotion"],
                label="Select Attributes to Analyze"
            )

            analyze_button = gr.Button("Analyze Face", variant="primary")

            analyze_result_plot = gr.Plot(label="Analysis Results")
            analyze_json = gr.JSON(label="Detailed Analysis")

            analyze_button.click(
                analyze_face,
                inputs=[analyze_img, actions_checkboxes],
                outputs=[analyze_result_plot, analyze_json]
            )

demo.launch()