File size: 9,938 Bytes
df30043
686ef17
df30043
686ef17
 
 
 
 
 
e4611cf
 
 
cd3a11d
 
 
 
 
5b73cc5
0644b4c
5b73cc5
0644b4c
df30043
15d82cf
f9b55bc
 
 
 
43bee1c
f9b55bc
 
 
 
 
 
 
 
e4611cf
cd3a11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b73cc5
f9b55bc
cd3a11d
 
 
f9b55bc
cd3a11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9b55bc
121a196
0644b4c
cd3a11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686ef17
cd3a11d
 
 
 
 
 
 
3bc1ee9
cd3a11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686ef17
f9b55bc
 
 
 
5b73cc5
43bee1c
f9b55bc
 
0644b4c
f9b55bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0b45d
f9b55bc
 
 
 
 
 
 
 
 
 
 
 
 
cd3a11d
5b73cc5
e4611cf
686ef17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz  # PyMuPDF
import io
import numpy as np
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load model and processor
ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)

class DocumentState:
    def __init__(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None
        
    def clear(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None
        
doc_state = DocumentState()

def process_pdf_file(file_path):
    """
    Convert PDF to images and extract text using PyMuPDF with improved error handling
    and image quality settings.
    """
    try:
        doc = fitz.open(file_path)
        images = []
        text = ""
        
        for page_num in range(doc.page_count):
            try:
                page = doc[page_num]
                
                # Extract text with better formatting
                page_text = page.get_text("text")
                if page_text.strip():  # Only add non-empty pages
                    text += f"Page {page_num + 1}:\n{page_text}\n\n"
                
                # Improved image extraction with error handling
                try:
                    # Use higher DPI for better quality
                    zoom = 2  # Increase zoom factor for better resolution
                    mat = fitz.Matrix(zoom, zoom)
                    pix = page.get_pixmap(matrix=mat, alpha=False)
                    
                    # Convert to PIL Image with proper color handling
                    img_data = pix.tobytes("png")
                    img = Image.open(io.BytesIO(img_data))
                    
                    # Ensure RGB mode and reasonable size
                    img = img.convert("RGB")
                    
                    # Resize if image is too large (keeping aspect ratio)
                    max_size = 1600
                    if max(img.size) > max_size:
                        ratio = max_size / max(img.size)
                        new_size = tuple(int(dim * ratio) for dim in img.size)
                        img = img.resize(new_size, Image.Resampling.LANCZOS)
                    
                    images.append(img)
                    
                except Exception as e:
                    logger.error(f"Error processing page {page_num} image: {str(e)}")
                    continue
                
            except Exception as e:
                logger.error(f"Error processing page {page_num}: {str(e)}")
                continue
                
        doc.close()
        
        if not images:
            raise ValueError("No valid images could be extracted from the PDF")
            
        return images, text
        
    except Exception as e:
        logger.error(f"Error processing PDF file: {str(e)}")
        raise

def process_file(file):
    """Process either PDF or image file with improved error handling."""
    try:
        doc_state.clear()
        
        if isinstance(file, dict):
            file_path = file["path"]
        else:
            file_path = file
            
        if file_path.lower().endswith('pdf'):
            doc_state.doc_type = 'pdf'
            try:
                doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
                return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
            except Exception as e:
                return f"Error processing PDF: {str(e)}. Please try a different PDF file or check if the file is corrupted."
        else:
            doc_state.doc_type = 'image'
            try:
                img = Image.open(file_path).convert("RGB")
                # Resize if necessary
                max_size = 1600
                if max(img.size) > max_size:
                    ratio = max_size / max(img.size)
                    new_size = tuple(int(dim * ratio) for dim in img.size)
                    img = img.resize(new_size, Image.Resampling.LANCZOS)
                doc_state.current_doc_images = [img]
                return "Image loaded successfully. You can now ask questions about the content."
            except Exception as e:
                return f"Error processing image: {str(e)}. Please try a different image file."
    except Exception as e:
        logger.error(f"Error in process_file: {str(e)}")
        return "An error occurred while processing the file. Please try again."

@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=8192):
    try:
        txt = message["text"]
        messages = []
        
        # Process new file if provided
        if message.get("files") and len(message["files"]) > 0:
            result = process_file(message["files"][0])
            if "Error" in result:
                yield result
                return
        
        # Process history with better error handling
        for i, msg in enumerate(history):
            try:
                if isinstance(msg[0], dict):
                    user_content = [{"type": "text", "text": msg[0]["text"]}]
                    if "files" in msg[0] and len(msg[0]["files"]) > 0:
                        user_content.append({"type": "image"})
                    messages.append({"role": "user", "content": user_content})
                    messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
                elif isinstance(msg[0], str):
                    messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
                    messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
            except Exception as e:
                logger.error(f"Error processing history message {i}: {str(e)}")
                continue

        # Include document context
        if doc_state.current_doc_images:
            context = f"\nDocument context:\n{doc_state.current_doc_text}" if doc_state.current_doc_text else ""
            current_msg = f"{txt}{context}"
            messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
        else:
            messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})

        # Process inputs
        texts = processor.apply_chat_template(messages, add_generation_prompt=True)
        
        try:
            if doc_state.current_doc_images:
                inputs = processor(
                    text=texts,
                    images=doc_state.current_doc_images[0:1],
                    return_tensors="pt"
                ).to("cuda")
            else:
                inputs = processor(text=texts, return_tensors="pt").to("cuda")
                
            streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
            generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
            
            thread = Thread(target=model.generate, kwargs=generation_kwargs)
            thread.start()
            
            buffer = ""
            for new_text in streamer:
                buffer += new_text
                time.sleep(0.01)
                yield buffer
                
        except Exception as e:
            logger.error(f"Error in model processing: {str(e)}")
            yield "An error occurred while processing your request. Please try again."
            
    except Exception as e:
        logger.error(f"Error in bot_streaming: {str(e)}")
        yield "An error occurred. Please try again."

def clear_context():
    """Clear the current document context."""
    doc_state.clear()
    return "Document context cleared. You can upload a new document."

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Document Analyzer with Chat Support")
    gr.Markdown("Upload a PDF or image and chat about its contents. For PDFs, all pages will be processed for visual analysis.")
    
    chatbot = gr.ChatInterface(
        fn=bot_streaming,
        title="Document Chat",
        examples=[
            [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
            [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
            [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
            [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
            [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
        ],
        textbox=gr.MultimodalTextbox(),
        additional_inputs=[
            gr.Slider(
                minimum=10,
                maximum=2048,
                value=8192,
                step=10,
                label="Maximum number of new tokens to generate",
            )
        ],
        cache_examples=False,
        stop_btn="Stop Generation",
        fill_height=True,
        multimodal=True
    )
    
    clear_btn = gr.Button("Clear Document Context")
    clear_btn.click(fn=clear_context)
    
    chatbot.textbox.file_types = ["image", "pdf", "text"]

# Launch the interface
demo.launch(debug=True)