Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -20,7 +20,7 @@ class DocumentState:
|
|
20 |
def __init__(self):
|
21 |
self.current_doc_images = []
|
22 |
self.current_doc_text = ""
|
23 |
-
self.doc_type = None
|
24 |
|
25 |
def clear(self):
|
26 |
self.current_doc_images = []
|
@@ -35,17 +35,18 @@ def process_pdf_file(file_path):
|
|
35 |
images = []
|
36 |
text = ""
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
text
|
42 |
-
|
43 |
-
# Convert page to image
|
44 |
-
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) # 300 DPI
|
45 |
img_data = pix.tobytes("png")
|
46 |
img = Image.open(io.BytesIO(img_data))
|
47 |
images.append(img.convert("RGB"))
|
48 |
|
|
|
|
|
|
|
49 |
doc.close()
|
50 |
return images, text
|
51 |
|
@@ -61,7 +62,7 @@ def process_file(file):
|
|
61 |
if file_path.lower().endswith('.pdf'):
|
62 |
doc_state.doc_type = 'pdf'
|
63 |
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
|
64 |
-
return f"PDF
|
65 |
else:
|
66 |
doc_state.doc_type = 'image'
|
67 |
doc_state.current_doc_images = [Image.open(file_path).convert("RGB")]
|
@@ -71,48 +72,35 @@ def process_file(file):
|
|
71 |
def bot_streaming(message, history, max_new_tokens=2048):
|
72 |
txt = message["text"]
|
73 |
messages = []
|
74 |
-
images = []
|
75 |
|
76 |
# Process new file if provided
|
77 |
if message.get("files") and len(message["files"]) > 0:
|
78 |
process_file(message["files"][0])
|
79 |
|
80 |
-
# Process history
|
81 |
for i, msg in enumerate(history):
|
82 |
if isinstance(msg[0], tuple):
|
83 |
-
messages.append({"role": "user", "content": [{"type": "text", "text":
|
84 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text":
|
85 |
-
elif isinstance(
|
86 |
-
pass
|
87 |
-
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
|
88 |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
89 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
90 |
|
91 |
# Include document context in the current message
|
92 |
if doc_state.current_doc_images:
|
93 |
-
|
94 |
-
context = ""
|
95 |
-
if doc_state.doc_type == 'pdf':
|
96 |
-
context = f"\nContext from PDF:\n{doc_state.current_doc_text}"
|
97 |
current_msg = f"{txt}{context}"
|
98 |
messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
else:
|
100 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
101 |
-
|
102 |
-
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
103 |
-
|
104 |
-
if not images:
|
105 |
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
106 |
-
else:
|
107 |
-
# Process images in batches if needed
|
108 |
-
max_images = 12 # Increased maximum number of images/pages
|
109 |
-
if len(images) > max_images:
|
110 |
-
# Take evenly spaced samples if we have too many pages
|
111 |
-
indices = np.linspace(0, len(images) - 1, max_images, dtype=int)
|
112 |
-
images = [images[i] for i in indices]
|
113 |
-
txt += f"\n(Note: Analyzing {max_images} evenly distributed pages from the document)"
|
114 |
-
|
115 |
-
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
116 |
|
117 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
118 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
@@ -131,10 +119,10 @@ def clear_context():
|
|
131 |
doc_state.clear()
|
132 |
return "Document context cleared. You can upload a new document."
|
133 |
|
134 |
-
# Create the Gradio interface
|
135 |
with gr.Blocks() as demo:
|
136 |
gr.Markdown("# Document Analyzer with Chat Support")
|
137 |
-
gr.Markdown("Upload a PDF or image and chat about its contents.
|
138 |
|
139 |
chatbot = gr.ChatInterface(
|
140 |
fn=bot_streaming,
|
|
|
20 |
def __init__(self):
|
21 |
self.current_doc_images = []
|
22 |
self.current_doc_text = ""
|
23 |
+
self.doc_type = None
|
24 |
|
25 |
def clear(self):
|
26 |
self.current_doc_images = []
|
|
|
35 |
images = []
|
36 |
text = ""
|
37 |
|
38 |
+
# Take first page only for initial processing
|
39 |
+
if doc.page_count > 0:
|
40 |
+
page = doc[0]
|
41 |
+
text = f"First page content:\n{page.get_text()}\n"
|
42 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
|
|
|
|
|
43 |
img_data = pix.tobytes("png")
|
44 |
img = Image.open(io.BytesIO(img_data))
|
45 |
images.append(img.convert("RGB"))
|
46 |
|
47 |
+
if doc.page_count > 1:
|
48 |
+
text += f"\nTotal pages in document: {doc.page_count}\n"
|
49 |
+
|
50 |
doc.close()
|
51 |
return images, text
|
52 |
|
|
|
62 |
if file_path.lower().endswith('.pdf'):
|
63 |
doc_state.doc_type = 'pdf'
|
64 |
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
|
65 |
+
return f"PDF first page processed. You can now ask questions about the content."
|
66 |
else:
|
67 |
doc_state.doc_type = 'image'
|
68 |
doc_state.current_doc_images = [Image.open(file_path).convert("RGB")]
|
|
|
72 |
def bot_streaming(message, history, max_new_tokens=2048):
|
73 |
txt = message["text"]
|
74 |
messages = []
|
|
|
75 |
|
76 |
# Process new file if provided
|
77 |
if message.get("files") and len(message["files"]) > 0:
|
78 |
process_file(message["files"][0])
|
79 |
|
80 |
+
# Process history
|
81 |
for i, msg in enumerate(history):
|
82 |
if isinstance(msg[0], tuple):
|
83 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0][1]}, {"type": "image"}]})
|
84 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
85 |
+
elif isinstance(msg[0], str):
|
|
|
|
|
86 |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
87 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
88 |
|
89 |
# Include document context in the current message
|
90 |
if doc_state.current_doc_images:
|
91 |
+
context = f"\nDocument context:\n{doc_state.current_doc_text}" if doc_state.current_doc_text else ""
|
|
|
|
|
|
|
92 |
current_msg = f"{txt}{context}"
|
93 |
messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
|
94 |
+
|
95 |
+
# Process with single image
|
96 |
+
inputs = processor(
|
97 |
+
text=texts,
|
98 |
+
images=doc_state.current_doc_images[0:1], # Only use first image
|
99 |
+
return_tensors="pt"
|
100 |
+
).to("cuda")
|
101 |
else:
|
102 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
|
|
|
|
|
|
|
|
103 |
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
106 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
|
|
119 |
doc_state.clear()
|
120 |
return "Document context cleared. You can upload a new document."
|
121 |
|
122 |
+
# Create the Gradio interface
|
123 |
with gr.Blocks() as demo:
|
124 |
gr.Markdown("# Document Analyzer with Chat Support")
|
125 |
+
gr.Markdown("Upload a PDF or image and chat about its contents. For PDFs, the first page will be processed for visual analysis.")
|
126 |
|
127 |
chatbot = gr.ChatInterface(
|
128 |
fn=bot_streaming,
|