Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -16,14 +16,28 @@ model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
|
16 |
torch_dtype=torch.bfloat16).to("cuda")
|
17 |
processor = AutoProcessor.from_pretrained(ckpt)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def process_pdf_file(file_path):
|
20 |
"""Convert PDF to images and extract text using PyMuPDF."""
|
21 |
doc = fitz.open(file_path)
|
22 |
images = []
|
23 |
text = ""
|
24 |
|
25 |
-
for page in doc:
|
26 |
# Extract text
|
|
|
27 |
text += page.get_text() + "\n"
|
28 |
|
29 |
# Convert page to image
|
@@ -35,43 +49,53 @@ def process_pdf_file(file_path):
|
|
35 |
doc.close()
|
36 |
return images, text
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
@spaces.GPU()
|
39 |
def bot_streaming(message, history, max_new_tokens=2048):
|
40 |
txt = message["text"]
|
41 |
-
ext_buffer = f"{txt}"
|
42 |
-
|
43 |
messages = []
|
44 |
images = []
|
45 |
|
46 |
-
# Process
|
|
|
|
|
|
|
|
|
47 |
for i, msg in enumerate(history):
|
48 |
if isinstance(msg[0], tuple):
|
49 |
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
50 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
51 |
-
images.append(Image.open(msg[0][0]).convert("RGB"))
|
52 |
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
53 |
pass
|
54 |
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
|
55 |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
56 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
57 |
|
58 |
-
#
|
59 |
-
if
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
pdf_images, pdf_text = process_pdf_file(file_path)
|
67 |
-
images.extend(pdf_images)
|
68 |
-
txt = f"{txt}\nExtracted text from PDF:\n{pdf_text}"
|
69 |
-
else:
|
70 |
-
# Handle regular image
|
71 |
-
image = Image.open(file_path).convert("RGB")
|
72 |
-
images.append(image)
|
73 |
-
|
74 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
75 |
else:
|
76 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
77 |
|
@@ -80,11 +104,13 @@ def bot_streaming(message, history, max_new_tokens=2048):
|
|
80 |
if not images:
|
81 |
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
82 |
else:
|
83 |
-
#
|
84 |
-
max_images =
|
85 |
if len(images) > max_images:
|
86 |
-
|
87 |
-
|
|
|
|
|
88 |
|
89 |
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
90 |
|
@@ -100,36 +126,47 @@ def bot_streaming(message, history, max_new_tokens=2048):
|
|
100 |
time.sleep(0.01)
|
101 |
yield buffer
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
examples=[
|
108 |
-
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
|
109 |
-
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
|
110 |
-
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
|
111 |
-
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
|
112 |
-
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
|
113 |
-
],
|
114 |
-
textbox=gr.MultimodalTextbox(),
|
115 |
-
additional_inputs=[
|
116 |
-
gr.Slider(
|
117 |
-
minimum=10,
|
118 |
-
maximum=500,
|
119 |
-
value=2048,
|
120 |
-
step=10,
|
121 |
-
label="Maximum number of new tokens to generate",
|
122 |
-
)
|
123 |
-
],
|
124 |
-
cache_examples=False,
|
125 |
-
description="MllM Document and PDF Analyzer",
|
126 |
-
stop_btn="Stop Generation",
|
127 |
-
fill_height=True,
|
128 |
-
multimodal=True
|
129 |
-
)
|
130 |
|
131 |
-
#
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
# Launch the interface
|
135 |
demo.launch(debug=True)
|
|
|
16 |
torch_dtype=torch.bfloat16).to("cuda")
|
17 |
processor = AutoProcessor.from_pretrained(ckpt)
|
18 |
|
19 |
+
class DocumentState:
|
20 |
+
def __init__(self):
|
21 |
+
self.current_doc_images = []
|
22 |
+
self.current_doc_text = ""
|
23 |
+
self.doc_type = None # 'pdf' or 'image'
|
24 |
+
|
25 |
+
def clear(self):
|
26 |
+
self.current_doc_images = []
|
27 |
+
self.current_doc_text = ""
|
28 |
+
self.doc_type = None
|
29 |
+
|
30 |
+
doc_state = DocumentState()
|
31 |
+
|
32 |
def process_pdf_file(file_path):
|
33 |
"""Convert PDF to images and extract text using PyMuPDF."""
|
34 |
doc = fitz.open(file_path)
|
35 |
images = []
|
36 |
text = ""
|
37 |
|
38 |
+
for page_num, page in enumerate(doc):
|
39 |
# Extract text
|
40 |
+
text += f"\n=== Page {page_num + 1} ===\n"
|
41 |
text += page.get_text() + "\n"
|
42 |
|
43 |
# Convert page to image
|
|
|
49 |
doc.close()
|
50 |
return images, text
|
51 |
|
52 |
+
def process_file(file):
|
53 |
+
"""Process either PDF or image file and update document state."""
|
54 |
+
doc_state.clear()
|
55 |
+
|
56 |
+
if isinstance(file, dict):
|
57 |
+
file_path = file["path"]
|
58 |
+
else:
|
59 |
+
file_path = file
|
60 |
+
|
61 |
+
if file_path.lower().endswith('.pdf'):
|
62 |
+
doc_state.doc_type = 'pdf'
|
63 |
+
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
|
64 |
+
return f"PDF processed successfully. {len(doc_state.current_doc_images)} pages loaded. You can now ask questions about the content."
|
65 |
+
else:
|
66 |
+
doc_state.doc_type = 'image'
|
67 |
+
doc_state.current_doc_images = [Image.open(file_path).convert("RGB")]
|
68 |
+
return "Image loaded successfully. You can now ask questions about the content."
|
69 |
+
|
70 |
@spaces.GPU()
|
71 |
def bot_streaming(message, history, max_new_tokens=2048):
|
72 |
txt = message["text"]
|
|
|
|
|
73 |
messages = []
|
74 |
images = []
|
75 |
|
76 |
+
# Process new file if provided
|
77 |
+
if message.get("files") and len(message["files"]) > 0:
|
78 |
+
process_file(message["files"][0])
|
79 |
+
|
80 |
+
# Process history and maintain context
|
81 |
for i, msg in enumerate(history):
|
82 |
if isinstance(msg[0], tuple):
|
83 |
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
84 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
|
|
85 |
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
86 |
pass
|
87 |
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
|
88 |
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
89 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
90 |
|
91 |
+
# Include document context in the current message
|
92 |
+
if doc_state.current_doc_images:
|
93 |
+
images.extend(doc_state.current_doc_images)
|
94 |
+
context = ""
|
95 |
+
if doc_state.doc_type == 'pdf':
|
96 |
+
context = f"\nContext from PDF:\n{doc_state.current_doc_text}"
|
97 |
+
current_msg = f"{txt}{context}"
|
98 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
else:
|
100 |
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
101 |
|
|
|
104 |
if not images:
|
105 |
inputs = processor(text=texts, return_tensors="pt").to("cuda")
|
106 |
else:
|
107 |
+
# Process images in batches if needed
|
108 |
+
max_images = 12 # Increased maximum number of images/pages
|
109 |
if len(images) > max_images:
|
110 |
+
# Take evenly spaced samples if we have too many pages
|
111 |
+
indices = np.linspace(0, len(images) - 1, max_images, dtype=int)
|
112 |
+
images = [images[i] for i in indices]
|
113 |
+
txt += f"\n(Note: Analyzing {max_images} evenly distributed pages from the document)"
|
114 |
|
115 |
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
|
116 |
|
|
|
126 |
time.sleep(0.01)
|
127 |
yield buffer
|
128 |
|
129 |
+
def clear_context():
|
130 |
+
"""Clear the current document context."""
|
131 |
+
doc_state.clear()
|
132 |
+
return "Document context cleared. You can upload a new document."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
# Create the Gradio interface with enhanced features
|
135 |
+
with gr.Blocks() as demo:
|
136 |
+
gr.Markdown("# Document Analyzer with Chat Support")
|
137 |
+
gr.Markdown("Upload a PDF or image and chat about its contents. The context is maintained throughout the conversation.")
|
138 |
+
|
139 |
+
chatbot = gr.ChatInterface(
|
140 |
+
fn=bot_streaming,
|
141 |
+
title="Document Chat",
|
142 |
+
examples=[
|
143 |
+
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
|
144 |
+
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
|
145 |
+
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
|
146 |
+
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
|
147 |
+
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
|
148 |
+
],
|
149 |
+
textbox=gr.MultimodalTextbox(),
|
150 |
+
additional_inputs=[
|
151 |
+
gr.Slider(
|
152 |
+
minimum=10,
|
153 |
+
maximum=2048,
|
154 |
+
value=2048,
|
155 |
+
step=10,
|
156 |
+
label="Maximum number of new tokens to generate",
|
157 |
+
)
|
158 |
+
],
|
159 |
+
cache_examples=False,
|
160 |
+
stop_btn="Stop Generation",
|
161 |
+
fill_height=True,
|
162 |
+
multimodal=True
|
163 |
+
)
|
164 |
+
|
165 |
+
clear_btn = gr.Button("Clear Document Context")
|
166 |
+
clear_btn.click(fn=clear_context)
|
167 |
+
|
168 |
+
# Update accepted file types
|
169 |
+
chatbot.textbox.file_types = ["image", "pdf"]
|
170 |
|
171 |
# Launch the interface
|
172 |
demo.launch(debug=True)
|