Spaces:
Running
Running
File size: 30,135 Bytes
2ebf628 a08593f 686ef17 df30043 686ef17 e4611cf cd3a11d 5b73cc5 0644b4c 2ebf628 4b69a7c 15d82cf f9b55bc 43bee1c f9b55bc e4611cf 0f2aa55 cd3a11d 0f2aa55 cd3a11d 2ebf628 0f2aa55 cd3a11d 5b73cc5 0f2aa55 cd3a11d f9b55bc 0f2aa55 9e36f0e cd3a11d 9e36f0e cd3a11d 0f2aa55 9e36f0e cd3a11d 9e36f0e cd3a11d f9b55bc 0ab72a8 cd3a11d 7c08af8 2dfe626 c6ee6e7 b956b25 c6ee6e7 b956b25 c6ee6e7 b956b25 c6ee6e7 b956b25 c6ee6e7 b956b25 7c08af8 2dfe626 7c08af8 2dfe626 7c08af8 2dfe626 a831859 2dfe626 a831859 2dfe626 a831859 2dfe626 7c08af8 cd3a11d 7c08af8 cd3a11d 7c08af8 3bc1ee9 cd3a11d 686ef17 f9b55bc 5b73cc5 43bee1c f9b55bc 7c08af8 f9b55bc 0f2aa55 9e36f0e 0f2aa55 7c08af8 a831859 7c08af8 a831859 7c08af8 0f2aa55 7c08af8 f9b55bc 0f2aa55 f9b55bc 7c08af8 0f2aa55 5b73cc5 e4611cf 686ef17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer , AutoModel,Qwen2VLForConditionalGeneration, AutoModelForImageTextToText , Qwen2_5_VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz # PyMuPDF
import io
import numpy as np
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load model and processor
ckpt ="Qwen/Qwen2.5-VL-7B-Instruct"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16,trust_remote_code=True).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt,trust_remote_code=True)
class DocumentState:
def __init__(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
def clear(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
doc_state = DocumentState()
def process_pdf_file(file_path):
"""Convert PDF to images and extract text using PyMuPDF."""
try:
doc = fitz.open(file_path)
images = []
text = ""
for page_num in range(doc.page_count):
try:
page = doc[page_num]
page_text = page.get_text("text")
if page_text.strip():
text += f"Page {page_num + 1}:\n{page_text}\n\n"
zoom = 3
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat, alpha=False)
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data))
img = img.convert("RGB")
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
images.append(img)
except Exception as e:
logger.error(f"Error processing page {page_num}: {str(e)}")
continue
doc.close()
if not images:
raise ValueError("No valid images could be extracted from the PDF")
return images, text
except Exception as e:
logger.error(f"Error processing PDF file: {str(e)}")
raise
def process_uploaded_file(file):
"""Process uploaded file and update document state."""
try:
doc_state.clear()
if file is None:
return "No file uploaded. Please upload a file."
# Get the file path and extension
if isinstance(file, dict):
file_path = file["name"]
else:
file_path = file.name
# Get file extension
file_ext = file_path.lower().split('.')[-1]
# Define allowed extensions
image_extensions = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'}
if file_ext == 'pdf':
doc_state.doc_type = 'pdf'
try:
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
except Exception as e:
return f"Error processing PDF: {str(e)}. Please try a different PDF file."
elif file_ext in image_extensions:
doc_state.doc_type = 'image'
try:
img = Image.open(file_path).convert("RGB")
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
doc_state.current_doc_images = [img]
return "Image loaded successfully. You can now ask questions about the content."
except Exception as e:
return f"Error processing image: {str(e)}. Please try a different image file."
else:
return f"Unsupported file type: {file_ext}. Please upload a PDF or image file (PNG, JPG, JPEG, GIF, BMP, WEBP)."
except Exception as e:
logger.error(f"Error in process_file: {str(e)}")
return "An error occurred while processing the file. Please try again."
@spaces.GPU()
def bot_streaming(prompt_option, max_new_tokens=4096):
try:
# Define predetermined prompts
prompts = {
"NOC Timesheet": (
"""Extract structured information from the provided timesheet. The extracted details should include:
Name
Position Title
Work Location
Contractor
NOC ID
Month and Year
Regular Service Days (ONSHORE)
Standby Days (ONSHORE in Doha)
Offshore Days
Standby & Extended Hitch Days (OFFSHORE)
Extended Hitch Days (ONSHORE Rotational)
Service during Weekends & Public Holidays
ONSHORE Overtime Hours (Over 8 hours)
OFFSHORE Overtime Hours (Over 12 hours)
Per Diem Days (ONSHORE/OFFSHORE Rotational Personnel)
Training Days
Travel Days
Noc representative appoval's name as approved_by
Noc representative's date approval_date
Noc representative status as approval_status
The output should be formatted as a JSON instance that conforms to the JSON schema below.\n\nAs an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}\nthe object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted."""
),
"NOC Basic": (
"Based on the provided timesheet details, extract the following information:\n"
" - Full name of the person\n"
" - Position title of the person\n"
" - Work location\n"
" - Contractor's name\n"
" - NOC ID\n"
" - Month and year (in MM/YYYY format)"
),
"NOC Structured test": (
"You are an advanced data extraction assistant. Your task is to parse structured input text and extract key data points into clearly defined categories. Focus only on the requested details, ensuring accuracy and proper grouping. Below is the format for extracting the data:\n\n"
"---\n"
"Project Information\n\n"
"Project Name:\n\n"
"Project and Package:\n\n"
"RPO Number:\n\n"
"PMC Name:\n\n"
"Project Location:\n\n"
"Year:\n\n"
"Month:\n\n"
"Timesheet Details\n\n"
"Week X (Date)\n\n"
"Holidays:\n\n"
"Regular Hours:\n\n"
"Overtime Hours:\n\n"
"Total Hours:\n\n"
"Comments:\n\n"
"Additional Data\n\n"
"Reviewed By:\n\n"
"Date of Review:\n\n"
"Position:\n\n"
"Supervisor Business:\n\n"
"Date of Approval:\n\n"
"---\n\n"
"Ensure the extracted data strictly follows the format above and is organized by category. Ignore unrelated text. Respond only with the formatted output."
),
"Aramco Full structured": (
"""You are a document parsing assistant designed to extract structured data from various document types, including invoices, timesheets, purchase orders, and travel bookings. Your goal is to return highly accurate, properly formatted JSON for each document type.
General Rules:
1. Always return ONLY valid JSON—no explanations, comments, or additional text.
2. Use null for any fields that are not present or cannot be extracted.
3. Ensure all JSON keys are enclosed in double quotes and properly formatted.
4. Validate financial, time tracking, and contract details carefully before output.
Extraction Instructions:
1. Invoice:
- Parse and extract financial and invoice-specific details.
- JSON structure:
```json
{
"invoice": {
"date": null,
"dueDate": null,
"accountNumber": null,
"invoiceNumber": null,
"customerContact": null,
"kintecContact": null,
"accountsContact": null,
"periodEnd": null,
"contractNo": null,
"specialistsName": null,
"rpoNumber": null,
"assignmentProject": null,
"workLocation": null,
"expenses": null,
"regularHours": null,
"overtime": null,
"mobilisationAllowance": null,
"dailyHousing": null,
"opPipTechnical": null,
"code": null,
"vatBasis": null,
"vatRate": null,
"vatAmount": null,
"totalExclVat": null,
"totalInclVat": null
}
}
```
2. Timesheet:
- Extract time tracking, work details, and approvals.
- JSON structure:
```json
{
"timesheet": {
"Year": null,
"RPO_Number": null,
"PMC_Name": null,
"Project_Location": null,
"Project_and_Package": null,
"Month": null,
"Timesheet_Details": [
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
},
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
}
],
"Monthly_Totals": {
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null
},
"reviewedBy": {
"name": null,
"position": null,
"date": null
},
"approvedBy": {
"name": null,
"position": null,
"date": null
}
}
}
```
3. Purchase Order:
- Extract contract and pricing details with precision.
- JSON structure:
```json
{
"purchaseOrder": {
"contractNo": null,
"relPoNo": null,
"version": null,
"title": null,
"startDate": null,
"endDate": null,
"costCenter": null,
"purchasingGroup": null,
"contractor": null,
"location": null,
"workDescription": null,
"pricing": {
"regularRate": null,
"overtimeRate": null,
"totalBudget": null
}
}
}
```
4. Travel Booking:
- Parse travel-specific and employee information.
- JSON structure:
```json
{
"travelBooking": {
"requestId": null,
"approvalStatus": null,
"employee": {
"name": null,
"id": null,
"email": null,
"firstName": null,
"lastName": null,
"gradeCodeGroup": null
},
"defaultManager": {
"name": null,
"email": null
},
"sender": {
"name": null,
"email": null
},
"travel": {
"startDate": null,
"endDate": null,
"requestPolicy": null,
"requestType": null,
"employeeType": null,
"travelActivity": null,
"tripType": null
},
"cost": {
"companyCode": null,
"costObject": null,
"costObjectId": null
},
"transport": {
"type": null,
"comments": null
},
"changeRequired": null,
"comments": null
}
}
```
Use these structures for parsing documents and ensure compliance with the rules and instructions provided for each type.
"""
),
"Aramco Timesheet only": (
""" Extract time tracking, work details, and approvals.
- JSON structure:
```json
{
"timesheet": {
"Year": null,
"RPO_Number": null,
"PMC_Name": null,
"Project_Location": null,
"Project_and_Package": null,
"Month": null,
"Timesheet_Details": [
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
},
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
}
],
"Monthly_Totals": {
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null
},
"reviewedBy": {
"name": null,
"position": null,
"date": null
},
"approvedBy": {
"name": null,
"position": null,
"date": null
}
}
}
```"""
),
"Aramco test": (
"""You are a high-performance document parsing assistant, optimized for speed and accuracy. Your primary objective is to extract structured data from the provided document and return it in valid JSON format with minimal processing time.
Guidelines for Speed Optimization:
1. Process the document with minimal computation and only extract the required fields.
2. Use null for any fields that are missing or not clearly identifiable.
3. Avoid redundant checks or deep parsing; rely on the most straightforward extraction methods.
4. Always return ONLY valid JSON—no additional text, explanations, or formatting errors.
5. Focus on precision for key-value pairs; skip over ambiguous or irrelevant information.
Document-Specific JSON Structures:
1. **Invoice**:
- Extract financial and customer details efficiently.
- JSON format:
```json
{
"invoice": {
"date": null,
"dueDate": null,
"accountNumber": null,
"invoiceNumber": null,
"customerContact": null,
"kintecContact": null,
"accountsContact": null,
"periodEnd": null,
"contractNo": null,
"specialistsName": null,
"rpoNumber": null,
"assignmentProject": null,
"workLocation": null,
"expenses": null,
"regularHours": null,
"overtime": null,
"mobilisationAllowance": null,
"dailyHousing": null,
"opPipTechnical": null,
"code": null,
"vatBasis": null,
"vatRate": null,
"vatAmount": null,
"totalExclVat": null,
"totalInclVat": null
}
}
```
2. **Timesheet**:
- Extract time tracking and approval data swiftly.
- JSON format:
```json
{
"timesheet": {
"Year": null,
"RPO_Number": null,
"PMC_Name": null,
"Project_Location": null,
"Project_and_Package": null,
"Month": null,
"Timesheet_Details": [
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
},
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
}
],
"Monthly_Totals": {
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null
},
"reviewedBy": {
"name": null,
"position": null,
"date": null
},
"approvedBy": {
"name": null,
"position": null,
"date": null
}
}
}
```
3. **Purchase Order**:
- Extract contract and pricing details with minimal overhead.
- JSON format:
```json
{
"purchaseOrder": {
"contractNo": null,
"relPoNo": null,
"version": null,
"title": null,
"startDate": null,
"endDate": null,
"costCenter": null,
"purchasingGroup": null,
"contractor": null,
"location": null,
"workDescription": null,
"pricing": {
"regularRate": null,
"overtimeRate": null,
"totalBudget": null
}
}
}
```
4. **Travel Booking**:
- Extract essential travel and employee data efficiently.
- JSON format:
```json
{
"travelBooking": {
"requestId": null,
"approvalStatus": null,
"employee": {
"name": null,
"id": null,
"email": null,
"firstName": null,
"lastName": null,
"gradeCodeGroup": null
},
"defaultManager": {
"name": null,
"email": null
},
"sender": {
"name": null,
"email": null
},
"travel": {
"startDate": null,
"endDate": null,
"requestPolicy": null,
"requestType": null,
"employeeType": null,
"travelActivity": null,
"tripType": null
},
"cost": {
"companyCode": null,
"costObject": null,
"costObjectId": null
},
"transport": {
"type": null,
"comments": null
},
"changeRequired": null,
"comments": null
}
}
```
Ensure your parsing method balances accuracy and speed, prioritizing quick turnaround without compromising JSON validity or structural integrity.
"""
)
}
# Get the selected prompt
selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
messages = []
# Include document context
if doc_state.current_doc_images:
context = f"\nDocument context:\n{doc_state.current_doc_text}" if doc_state.current_doc_text else ""
current_msg = f"{selected_prompt}{context}"
messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": selected_prompt}]})
# Process inputs
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
try:
if doc_state.current_doc_images:
inputs = processor(
text=texts,
images=doc_state.current_doc_images[0:1],
return_tensors="pt"
).to("cuda")
else:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
except Exception as e:
logger.error(f"Error in model processing: {str(e)}")
yield "An error occurred while processing your request. Please try again."
except Exception as e:
logger.error(f"Error in bot_streaming: {str(e)}")
yield "An error occurred. Please try again."
def clear_context():
"""Clear the current document context."""
doc_state.clear()
return "Document context cleared. You can upload a new document."
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Document Analyzer with Predetermined Prompts")
gr.Markdown("Upload a PDF or image (PNG, JPG, JPEG, GIF, BMP, WEBP) and select a prompt to analyze its contents.")
with gr.Row():
file_upload = gr.File(
label="Upload Document",
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
)
upload_status = gr.Textbox(
label="Upload Status",
interactive=False
)
with gr.Row():
prompt_dropdown = gr.Dropdown(
label="Select Prompt",
choices=[
"NOC Timesheet",
"NOC Basic",
"NOC Structured test",
"Aramco Full structured",
"Aramco Timesheet only",
"Aramco test"
],
value="Options"
)
generate_btn = gr.Button("Generate")
clear_btn = gr.Button("Clear Document Context")
output_text = gr.Textbox(
label="Output",
interactive=False
)
file_upload.change(
fn=process_uploaded_file,
inputs=[file_upload],
outputs=[upload_status]
)
generate_btn.click(
fn=bot_streaming,
inputs=[prompt_dropdown],
outputs=[output_text]
)
clear_btn.click(
fn=clear_context,
outputs=[upload_status]
)
# Launch the interface
demo.launch(debug=True) |