Spaces:
Running
Running
File size: 18,133 Bytes
78af081 e4611cf 78af081 cd3a11d 78af081 cd3a11d 5b73cc5 78af081 15d82cf 78af081 f9b55bc 43bee1c 78af081 f9b55bc 78af081 f9b55bc e4611cf 0f2aa55 cd3a11d 0f2aa55 cd3a11d 78af081 2ebf628 0f2aa55 78af081 0f2aa55 cd3a11d 5b73cc5 0f2aa55 cd3a11d 0f2aa55 9e36f0e cd3a11d 0f2aa55 9e36f0e cd3a11d 9e36f0e cd3a11d 78af081 cd3a11d f9b55bc 78af081 0ab72a8 78af081 cd3a11d 7c08af8 2dfe626 c6ee6e7 b956b25 c6ee6e7 b956b25 c6ee6e7 b956b25 c6ee6e7 b956b25 c6ee6e7 78af081 c6ee6e7 78af081 7c08af8 2dfe626 7c08af8 78af081 2dfe626 78af081 2dfe626 78af081 2dfe626 78af081 2dfe626 78af081 2dfe626 78af081 2dfe626 78af081 7c08af8 78af081 7c08af8 78af081 7c08af8 78af081 cd3a11d 78af081 cd3a11d 78af081 cd3a11d 78af081 cd3a11d 78af081 686ef17 f9b55bc 5b73cc5 78af081 f9b55bc 7c08af8 f9b55bc 0f2aa55 9e36f0e 0f2aa55 7c08af8 a831859 78af081 7c08af8 78af081 7c08af8 0f2aa55 7c08af8 f9b55bc 0f2aa55 f9b55bc 7c08af8 0f2aa55 5b73cc5 e4611cf 78af081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
import openai
import base64
import io
import time
import logging
import fitz # PyMuPDF
from PIL import Image
import gradio as gr
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
import os
OPENROUTER_API_KEY = os.getenv("OPENAI_TOKEN")
if not OPENROUTER_API_KEY:
raise ValueError("OPENROUTER_API_KEY environment variable not set")
openai.api_key = OPENROUTER_API_KEY
# Configure the OpenAI API to use OpenRouter
openai.api_base = "https://openrouter.ai/api/v1"
openai.api_key = OPENROUTER_API_KEY
# -------------------------------
# Document State and File Processing
# -------------------------------
class DocumentState:
def __init__(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
def clear(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
doc_state = DocumentState()
def process_pdf_file(file_path):
"""Convert PDF to images and extract text using PyMuPDF."""
try:
doc = fitz.open(file_path)
images = []
text = ""
for page_num in range(doc.page_count):
try:
page = doc[page_num]
page_text = page.get_text("text")
if page_text.strip():
text += f"Page {page_num + 1}:\n{page_text}\n\n"
# Render page to an image
zoom = 3
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat, alpha=False)
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data))
img = img.convert("RGB")
# Resize if image is too large
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
images.append(img)
except Exception as e:
logger.error(f"Error processing page {page_num}: {str(e)}")
continue
doc.close()
if not images:
raise ValueError("No valid images could be extracted from the PDF")
return images, text
except Exception as e:
logger.error(f"Error processing PDF file: {str(e)}")
raise
def process_uploaded_file(file):
"""Process uploaded file and update document state."""
try:
doc_state.clear()
if file is None:
return "No file uploaded. Please upload a file."
# Get the file path and extension
if isinstance(file, dict):
file_path = file["name"]
else:
file_path = file.name
file_ext = file_path.lower().split('.')[-1]
image_extensions = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'}
if file_ext == 'pdf':
doc_state.doc_type = 'pdf'
try:
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
except Exception as e:
return f"Error processing PDF: {str(e)}. Please try a different PDF file."
elif file_ext in image_extensions:
doc_state.doc_type = 'image'
try:
img = Image.open(file_path).convert("RGB")
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
doc_state.current_doc_images = [img]
return "Image loaded successfully. You can now ask questions about the content."
except Exception as e:
return f"Error processing image: {str(e)}. Please try a different image file."
else:
return f"Unsupported file type: {file_ext}. Please upload a PDF or image file (PNG, JPG, JPEG, GIF, BMP, WEBP)."
except Exception as e:
logger.error(f"Error in process_uploaded_file: {str(e)}")
return "An error occurred while processing the file. Please try again."
# -------------------------------
# Bot Streaming Function Using OpenAI API
# -------------------------------
def bot_streaming(prompt_option, max_new_tokens=4096):
"""
Generate a response using the OpenAI API.
If an image is available, it is encoded in base64 and appended to the prompt.
"""
try:
# Define predetermined prompts
prompts = {
"NOC Timesheet": (
"""Extract structured information from the provided timesheet. The extracted details should include:
Name
Position Title
Work Location
Contractor
NOC ID
Month and Year
Regular Service Days (ONSHORE)
Standby Days (ONSHORE in Doha)
Offshore Days
Standby & Extended Hitch Days (OFFSHORE)
Extended Hitch Days (ONSHORE Rotational)
Service during Weekends & Public Holidays
ONSHORE Overtime Hours (Over 8 hours)
OFFSHORE Overtime Hours (Over 12 hours)
Per Diem Days (ONSHORE/OFFSHORE Rotational Personnel)
Training Days
Travel Days
Noc representative appoval's name as approved_by
Noc representative's date approval_date
Noc representative status as approval_status
The output should be formatted as a JSON instance that conforms to the JSON schema below.
As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]} the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted."""
),
"NOC Basic": (
"Based on the provided timesheet details, extract the following information:\n"
" - Full name of the person\n"
" - Position title of the person\n"
" - Work location\n"
" - Contractor's name\n"
" - NOC ID\n"
" - Month and year (in MM/YYYY format)"
),
"Aramco Full structured": (
"""You are a document parsing assistant designed to extract structured data from various document types, including invoices, timesheets, purchase orders, and travel bookings. Your goal is to return highly accurate, properly formatted JSON for each document type.
General Rules:
1. Always return ONLY valid JSON—no explanations, comments, or additional text.
2. Use null for any fields that are not present or cannot be extracted.
3. Ensure all JSON keys are enclosed in double quotes and properly formatted.
4. Validate financial, time tracking, and contract details carefully before output.
Extraction Instructions:
1. Invoice:
- Parse and extract financial and invoice-specific details.
- JSON structure:
```json
{
"invoice": {
"date": null,
"dueDate": null,
"accountNumber": null,
"invoiceNumber": null,
"customerContact": null,
"kintecContact": null,
"accountsContact": null,
"periodEnd": null,
"contractNo": null,
"specialistsName": null,
"rpoNumber": null,
"assignmentProject": null,
"workLocation": null,
"expenses": null,
"regularHours": null,
"overtime": null,
"mobilisationAllowance": null,
"dailyHousing": null,
"opPipTechnical": null,
"code": null,
"vatBasis": null,
"vatRate": null,
"vatAmount": null,
"totalExclVat": null,
"totalInclVat": null
}
}
```
2. Timesheet:
- Extract time tracking, work details, and approvals.
- JSON structure:
```json
{
"timesheet": {
"Year": null,
"RPO_Number": null,
"PMC_Name": null,
"Project_Location": null,
"Project_and_Package": null,
"Month": null,
"Timesheet_Details": [
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
},
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
}
],
"Monthly_Totals": {
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null
},
"reviewedBy": {
"name": null,
"position": null,
"date": null
},
"approvedBy": {
"name": null,
"position": null,
"date": null
}
}
}
```
3. Purchase Order:
- Extract contract and pricing details with precision.
- JSON structure:
```json
{
"purchaseOrder": {
"contractNo": null,
"relPoNo": null,
"version": null,
"title": null,
"startDate": null,
"endDate": null,
"costCenter": null,
"purchasingGroup": null,
"contractor": null,
"location": null,
"workDescription": null,
"pricing": {
"regularRate": null,
"overtimeRate": null,
"totalBudget": null
}
}
}
```
4. Travel Booking:
- Parse travel-specific and employee information.
- JSON structure:
```json
{
"travelBooking": {
"requestId": null,
"approvalStatus": null,
"employee": {
"name": null,
"id": null,
"email": null,
"firstName": null,
"lastName": null,
"gradeCodeGroup": null
},
"defaultManager": {
"name": null,
"email": null
},
"sender": {
"name": null,
"email": null
},
"travel": {
"startDate": null,
"endDate": null,
"requestPolicy": null,
"requestType": null,
"employeeType": null,
"travelActivity": null,
"tripType": null
},
"cost": {
"companyCode": null,
"costObject": null,
"costObjectId": null
},
"transport": {
"type": null,
"comments": null
},
"changeRequired": null,
"comments": null
}
}
```
Use these structures for parsing documents and ensure compliance with the rules and instructions provided for each type."""
),
"Aramco Timesheet only": (
"""Extract time tracking, work details, and approvals.
- JSON structure:
```json
{
"timesheet": {
"Year": null,
"RPO_Number": null,
"PMC_Name": null,
"Project_Location": null,
"Project_and_Package": null,
"Month": null,
"Timesheet_Details": [
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
},
{
"Week": null,
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null,
"Comments": null
}
],
"Monthly_Totals": {
"Regular_Hours": null,
"Overtime_Hours": null,
"Total_Hours": null
},
"reviewedBy": {
"name": null,
"position": null,
"date": null
},
"approvedBy": {
"name": null,
"position": null,
"date": null
}
}
}
```"""
),
"NOC Invoice": (
"""You are a highly accurate data extraction system. Your task is to analyze the provided image of an invoice and extract all data, paying close attention to the structure and formatting of the document. Organize the extracted data in a clear, structured format, such as JSON. Do not invent any information. If a field cannot be read with high confidence, indicate that with "UNCLEAR" or a similar designation. Be as specific as possible, and do not summarize or combine fields unless explicitly indicated.
Here's the expected output format, in JSON, with all required fields:
```json
{
"invoiceDetails": {
"pleaseQuote": "string",
"invoiceNumber": "string",
"workPeriod": "string",
"invoiceDate": "string",
"assignmentReference": "string"
},
"from": {
"companyName": "string",
"addressLine1": "string",
"addressLine2": "string",
"city": "string",
"postalCode": "string",
"country": "string"
},
"to": {
"companyName": "string",
"office": "string",
"floor": "string",
"building": "string",
"addressLine1": "string",
"poBox": "string",
"city": "string"
},
"services": [
{
"serviceDetails": "string",
"fromDate": "string",
"toDate": "string",
"currency": "string",
"fx": "string",
"noOfDays": "number or string (if range)",
"rate": "number",
"total": "number"
}
],
"totals": {
"subTotal": "number",
"tax": "number",
"totalDue": "number"
},
"bankDetails": {
"bankName": "string",
"descriptionReferenceField": "string",
"bankAddress": "string",
"swiftBicCode": "string",
"ibanNumber": "string",
"accountNumber": "string",
"beneficiaryName": "string",
"accountCurrency": "string",
"expectedAmount": "string"
}
}
```"""
)
}
# Retrieve the selected prompt
selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
context = ""
if doc_state.current_doc_images:
if doc_state.current_doc_text:
context = f"\nDocument context:\n{doc_state.current_doc_text}"
full_prompt = selected_prompt + context
# Create the messages list for the API call
messages = [{"role": "user", "content": full_prompt}]
# If an image is available, encode it in base64 and append to the prompt
if doc_state.current_doc_images:
buffered = io.BytesIO()
doc_state.current_doc_images[0].save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
messages[0]["content"] += f"\n[Image Data: {img_str}]"
# Call the OpenAI API with streaming enabled.
response = openai.ChatCompletion.create(
model="qwen/qwen2.5-vl-72b-instruct:free",
messages=messages,
max_tokens=max_new_tokens,
stream=True,
)
buffer = ""
for chunk in response:
if 'choices' in chunk:
delta = chunk['choices'][0].get('delta', {})
content = delta.get('content', '')
buffer += content
time.sleep(0.01)
yield buffer
except Exception as e:
logger.error(f"Error in bot_streaming: {str(e)}")
yield "An error occurred while processing your request. Please try again."
def clear_context():
"""Clear the current document context."""
doc_state.clear()
return "Document context cleared. You can upload a new document."
# -------------------------------
# Create the Gradio Interface
# -------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Document Analyzer with Predetermined Prompts")
gr.Markdown("Upload a PDF or image (PNG, JPG, JPEG, GIF, BMP, WEBP) and select a prompt to analyze its contents.")
with gr.Row():
file_upload = gr.File(
label="Upload Document",
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
)
upload_status = gr.Textbox(
label="Upload Status",
interactive=False
)
with gr.Row():
prompt_dropdown = gr.Dropdown(
label="Select Prompt",
choices=[
"NOC Timesheet",
"NOC Basic",
"Aramco Full structured",
"Aramco Timesheet only",
"NOC Invoice"
],
value="NOC Timesheet"
)
generate_btn = gr.Button("Generate")
clear_btn = gr.Button("Clear Document Context")
output_text = gr.Textbox(
label="Output",
interactive=False
)
file_upload.change(
fn=process_uploaded_file,
inputs=[file_upload],
outputs=[upload_status]
)
generate_btn.click(
fn=bot_streaming,
inputs=[prompt_dropdown],
outputs=[output_text]
)
clear_btn.click(
fn=clear_context,
outputs=[upload_status]
)
# Launch the interface
demo.launch(debug=True)
|