File size: 18,133 Bytes
78af081
 
e4611cf
78af081
cd3a11d
78af081
 
 
cd3a11d
 
 
 
5b73cc5
78af081
 
 
 
 
 
 
 
 
15d82cf
78af081
 
 
f9b55bc
 
 
 
43bee1c
78af081
f9b55bc
 
 
 
78af081
f9b55bc
 
e4611cf
0f2aa55
cd3a11d
 
 
 
 
 
 
 
0f2aa55
cd3a11d
 
78af081
2ebf628
0f2aa55
 
 
 
 
 
78af081
0f2aa55
 
 
 
 
 
 
cd3a11d
 
 
 
 
 
 
 
 
 
5b73cc5
0f2aa55
 
cd3a11d
 
0f2aa55
 
9e36f0e
 
 
 
 
 
 
 
 
 
cd3a11d
 
 
 
 
0f2aa55
9e36f0e
cd3a11d
 
 
 
 
 
 
 
 
 
 
 
9e36f0e
 
cd3a11d
78af081
cd3a11d
f9b55bc
78af081
 
 
0ab72a8
78af081
 
 
 
 
cd3a11d
7c08af8
 
2dfe626
c6ee6e7
 
 
 
 
 
 
 
b956b25
c6ee6e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b956b25
c6ee6e7
b956b25
c6ee6e7
b956b25
c6ee6e7
78af081
c6ee6e7
78af081
7c08af8
2dfe626
7c08af8
 
 
 
 
 
 
 
78af081
2dfe626
78af081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dfe626
78af081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dfe626
78af081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dfe626
78af081
2dfe626
78af081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dfe626
78af081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c08af8
 
 
78af081
7c08af8
78af081
 
 
 
 
7c08af8
78af081
 
cd3a11d
78af081
cd3a11d
78af081
 
 
 
cd3a11d
78af081
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3a11d
 
 
 
 
78af081
686ef17
f9b55bc
 
 
 
5b73cc5
78af081
 
 
f9b55bc
7c08af8
 
f9b55bc
0f2aa55
 
9e36f0e
 
0f2aa55
 
 
 
 
 
7c08af8
 
 
 
a831859
 
 
 
78af081
7c08af8
78af081
7c08af8
 
 
0f2aa55
 
7c08af8
 
 
f9b55bc
 
0f2aa55
 
 
 
 
f9b55bc
7c08af8
 
 
 
 
 
0f2aa55
 
 
 
5b73cc5
e4611cf
78af081
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import openai
import base64
import io
import time
import logging
import fitz  # PyMuPDF
from PIL import Image
import gradio as gr

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

import os
OPENROUTER_API_KEY = os.getenv("OPENAI_TOKEN")
if not OPENROUTER_API_KEY:
    raise ValueError("OPENROUTER_API_KEY environment variable not set")
openai.api_key = OPENROUTER_API_KEY

# Configure the OpenAI API to use OpenRouter
openai.api_base = "https://openrouter.ai/api/v1"
openai.api_key = OPENROUTER_API_KEY

# -------------------------------
# Document State and File Processing
# -------------------------------
class DocumentState:
    def __init__(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None

    def clear(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None

doc_state = DocumentState()

def process_pdf_file(file_path):
    """Convert PDF to images and extract text using PyMuPDF."""
    try:
        doc = fitz.open(file_path)
        images = []
        text = ""
        for page_num in range(doc.page_count):
            try:
                page = doc[page_num]
                page_text = page.get_text("text")
                if page_text.strip():
                    text += f"Page {page_num + 1}:\n{page_text}\n\n"
                
                # Render page to an image
                zoom = 3
                mat = fitz.Matrix(zoom, zoom)
                pix = page.get_pixmap(matrix=mat, alpha=False)
                img_data = pix.tobytes("png")
                img = Image.open(io.BytesIO(img_data))
                img = img.convert("RGB")
                
                # Resize if image is too large
                max_size = 1600
                if max(img.size) > max_size:
                    ratio = max_size / max(img.size)
                    new_size = tuple(int(dim * ratio) for dim in img.size)
                    img = img.resize(new_size, Image.Resampling.LANCZOS)
                
                images.append(img)
            except Exception as e:
                logger.error(f"Error processing page {page_num}: {str(e)}")
                continue
        doc.close()
        if not images:
            raise ValueError("No valid images could be extracted from the PDF")
        return images, text
    except Exception as e:
        logger.error(f"Error processing PDF file: {str(e)}")
        raise

def process_uploaded_file(file):
    """Process uploaded file and update document state."""
    try:
        doc_state.clear()
        if file is None:
            return "No file uploaded. Please upload a file."
        
        # Get the file path and extension
        if isinstance(file, dict):
            file_path = file["name"]
        else:
            file_path = file.name
        file_ext = file_path.lower().split('.')[-1]
        image_extensions = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'}
        
        if file_ext == 'pdf':
            doc_state.doc_type = 'pdf'
            try:
                doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
                return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
            except Exception as e:
                return f"Error processing PDF: {str(e)}. Please try a different PDF file."
        elif file_ext in image_extensions:
            doc_state.doc_type = 'image'
            try:
                img = Image.open(file_path).convert("RGB")
                max_size = 1600
                if max(img.size) > max_size:
                    ratio = max_size / max(img.size)
                    new_size = tuple(int(dim * ratio) for dim in img.size)
                    img = img.resize(new_size, Image.Resampling.LANCZOS)
                doc_state.current_doc_images = [img]
                return "Image loaded successfully. You can now ask questions about the content."
            except Exception as e:
                return f"Error processing image: {str(e)}. Please try a different image file."
        else:
            return f"Unsupported file type: {file_ext}. Please upload a PDF or image file (PNG, JPG, JPEG, GIF, BMP, WEBP)."
    except Exception as e:
        logger.error(f"Error in process_uploaded_file: {str(e)}")
        return "An error occurred while processing the file. Please try again."

# -------------------------------
# Bot Streaming Function Using OpenAI API
# -------------------------------
def bot_streaming(prompt_option, max_new_tokens=4096):
    """
    Generate a response using the OpenAI API.
    
    If an image is available, it is encoded in base64 and appended to the prompt.
    """
    try:
        # Define predetermined prompts
        prompts = {
            "NOC Timesheet": (
                """Extract structured information from the provided timesheet. The extracted details should include:

Name

Position Title

Work Location

Contractor 

NOC ID

Month and Year

Regular Service Days (ONSHORE)

Standby Days (ONSHORE in Doha)

Offshore Days

Standby & Extended Hitch Days (OFFSHORE)

Extended Hitch Days (ONSHORE Rotational)

Service during Weekends & Public Holidays

ONSHORE Overtime Hours (Over 8 hours)

OFFSHORE Overtime Hours (Over 12 hours)

Per Diem Days (ONSHORE/OFFSHORE Rotational Personnel)

Training Days

Travel Days

Noc representative appoval's name as approved_by

Noc representative's date approval_date

Noc representative status as approval_status

The output should be formatted as a JSON instance that conforms to the JSON schema below.

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]} the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted."""
            ),
            "NOC Basic": (
                "Based on the provided timesheet details, extract the following information:\n"
                "   - Full name of the person\n"
                "   - Position title of the person\n"
                "   - Work location\n"
                "   - Contractor's name\n"
                "   - NOC ID\n"
                "   - Month and year (in MM/YYYY format)"
            ),
            "Aramco Full structured": (
                """You are a document parsing assistant designed to extract structured data from various document types, including invoices, timesheets, purchase orders, and travel bookings. Your goal is to return highly accurate, properly formatted JSON for each document type.
General Rules:
1. Always return ONLY valid JSON—no explanations, comments, or additional text.
2. Use null for any fields that are not present or cannot be extracted.
3. Ensure all JSON keys are enclosed in double quotes and properly formatted.
4. Validate financial, time tracking, and contract details carefully before output.

Extraction Instructions:

1. Invoice:
   - Parse and extract financial and invoice-specific details.
   - JSON structure:
     ```json
     {
         "invoice": {
             "date": null,
             "dueDate": null,
             "accountNumber": null,
             "invoiceNumber": null,
             "customerContact": null,
             "kintecContact": null,
             "accountsContact": null,
             "periodEnd": null,
             "contractNo": null,
             "specialistsName": null,
             "rpoNumber": null,
             "assignmentProject": null,
             "workLocation": null,
             "expenses": null,
             "regularHours": null,
             "overtime": null,
             "mobilisationAllowance": null,
             "dailyHousing": null,
             "opPipTechnical": null,
             "code": null,
             "vatBasis": null,
             "vatRate": null,
             "vatAmount": null,
             "totalExclVat": null,
             "totalInclVat": null
         }
     }
     ```

2. Timesheet:
   - Extract time tracking, work details, and approvals.
   - JSON structure:
     ```json
     {
         "timesheet": {
             "Year": null,
             "RPO_Number": null,
             "PMC_Name": null,
             "Project_Location": null,
             "Project_and_Package": null,
             "Month": null,
             "Timesheet_Details": [
                 {
                     "Week": null,
                     "Regular_Hours": null,
                     "Overtime_Hours": null,
                     "Total_Hours": null,
                     "Comments": null
                 },
                 {
                     "Week": null,
                     "Regular_Hours": null,
                     "Overtime_Hours": null,
                     "Total_Hours": null,
                     "Comments": null
                 }
             ],
             "Monthly_Totals": {
                 "Regular_Hours": null,
                 "Overtime_Hours": null,
                 "Total_Hours": null
             },
             "reviewedBy": {
                 "name": null,
                 "position": null,
                 "date": null
             },
             "approvedBy": {
                 "name": null,
                 "position": null,
                 "date": null
             }
         }
     }
     ```
                
3. Purchase Order:
   - Extract contract and pricing details with precision.
   - JSON structure:
     ```json
     {
         "purchaseOrder": {
             "contractNo": null,
             "relPoNo": null,
             "version": null,
             "title": null,
             "startDate": null,
             "endDate": null,
             "costCenter": null,
             "purchasingGroup": null,
             "contractor": null,
             "location": null,
             "workDescription": null,
             "pricing": {
                 "regularRate": null,
                 "overtimeRate": null,
                 "totalBudget": null
             }
         }
     }
     ```
                
4. Travel Booking:
   - Parse travel-specific and employee information.
   - JSON structure:
     ```json
     {
         "travelBooking": {
             "requestId": null,
             "approvalStatus": null,
             "employee": {
                 "name": null,
                 "id": null,
                 "email": null,
                 "firstName": null,
                 "lastName": null,
                 "gradeCodeGroup": null
             },
             "defaultManager": {
                 "name": null,
                 "email": null
             },
             "sender": {
                 "name": null,
                 "email": null
             },
             "travel": {
                 "startDate": null,
                 "endDate": null,
                 "requestPolicy": null,
                 "requestType": null,
                 "employeeType": null,
                 "travelActivity": null,
                 "tripType": null
             },
             "cost": {
                 "companyCode": null,
                 "costObject": null,
                 "costObjectId": null
             },
             "transport": {
                 "type": null,
                 "comments": null
             },
             "changeRequired": null,
             "comments": null
         }
     }
     ```
                
Use these structures for parsing documents and ensure compliance with the rules and instructions provided for each type."""
            ),
            "Aramco Timesheet only": (
                """Extract time tracking, work details, and approvals.
- JSON structure:
```json
{
    "timesheet": {
        "Year": null,
        "RPO_Number": null,
        "PMC_Name": null,
        "Project_Location": null,
        "Project_and_Package": null,
        "Month": null,
        "Timesheet_Details": [
            {
                "Week": null,
                "Regular_Hours": null,
                "Overtime_Hours": null,
                "Total_Hours": null,
                "Comments": null
            },
            {
                "Week": null,
                "Regular_Hours": null,
                "Overtime_Hours": null,
                "Total_Hours": null,
                "Comments": null
            }
        ],
        "Monthly_Totals": {
            "Regular_Hours": null,
            "Overtime_Hours": null,
            "Total_Hours": null
        },
        "reviewedBy": {
            "name": null,
            "position": null,
            "date": null
        },
        "approvedBy": {
            "name": null,
            "position": null,
            "date": null
        }
    }
}
```"""
            ),
            "NOC Invoice": (
                """You are a highly accurate data extraction system. Your task is to analyze the provided image of an invoice and extract all data, paying close attention to the structure and formatting of the document. Organize the extracted data in a clear, structured format, such as JSON. Do not invent any information. If a field cannot be read with high confidence, indicate that with "UNCLEAR" or a similar designation. Be as specific as possible, and do not summarize or combine fields unless explicitly indicated.

Here's the expected output format, in JSON, with all required fields:

```json
{
  "invoiceDetails": {
    "pleaseQuote": "string",
    "invoiceNumber": "string",
    "workPeriod": "string",
    "invoiceDate": "string",
    "assignmentReference": "string"
  },
  "from": {
    "companyName": "string",
    "addressLine1": "string",
    "addressLine2": "string",
    "city": "string",
    "postalCode": "string",
    "country": "string"
  },
  "to": {
    "companyName": "string",
    "office": "string",
    "floor": "string",
    "building": "string",
    "addressLine1": "string",
    "poBox": "string",
    "city": "string"
  },
  "services": [
    {
      "serviceDetails": "string",
      "fromDate": "string",
      "toDate": "string",
      "currency": "string",
      "fx": "string",
      "noOfDays": "number or string (if range)",
      "rate": "number",
      "total": "number"
    }
  ],
  "totals": {
    "subTotal": "number",
    "tax": "number",
    "totalDue": "number"
  },
  "bankDetails": {
    "bankName": "string",
    "descriptionReferenceField": "string",
    "bankAddress": "string",
    "swiftBicCode": "string",
    "ibanNumber": "string",
    "accountNumber": "string",
    "beneficiaryName": "string",
    "accountCurrency": "string",
    "expectedAmount": "string"
  }
}
```"""
            )
        }
        
        # Retrieve the selected prompt
        selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
        context = ""
        if doc_state.current_doc_images:
            if doc_state.current_doc_text:
                context = f"\nDocument context:\n{doc_state.current_doc_text}"
        full_prompt = selected_prompt + context
        
        # Create the messages list for the API call
        messages = [{"role": "user", "content": full_prompt}]
        
        # If an image is available, encode it in base64 and append to the prompt
        if doc_state.current_doc_images:
            buffered = io.BytesIO()
            doc_state.current_doc_images[0].save(buffered, format="PNG")
            img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
            messages[0]["content"] += f"\n[Image Data: {img_str}]"
        
        # Call the OpenAI API with streaming enabled.
        response = openai.ChatCompletion.create(
            model="qwen/qwen2.5-vl-72b-instruct:free",
            messages=messages,
            max_tokens=max_new_tokens,
            stream=True,
        )
        
        buffer = ""
        for chunk in response:
            if 'choices' in chunk:
                delta = chunk['choices'][0].get('delta', {})
                content = delta.get('content', '')
                buffer += content
                time.sleep(0.01)
                yield buffer
                
    except Exception as e:
        logger.error(f"Error in bot_streaming: {str(e)}")
        yield "An error occurred while processing your request. Please try again."

def clear_context():
    """Clear the current document context."""
    doc_state.clear()
    return "Document context cleared. You can upload a new document."

# -------------------------------
# Create the Gradio Interface
# -------------------------------
with gr.Blocks() as demo:
    gr.Markdown("# Document Analyzer with Predetermined Prompts")
    gr.Markdown("Upload a PDF or image (PNG, JPG, JPEG, GIF, BMP, WEBP) and select a prompt to analyze its contents.")
    
    with gr.Row():
        file_upload = gr.File(
            label="Upload Document",
            file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
        )
        upload_status = gr.Textbox(
            label="Upload Status",
            interactive=False
        )
    
    with gr.Row():
        prompt_dropdown = gr.Dropdown(
            label="Select Prompt",
            choices=[
                "NOC Timesheet",
                "NOC Basic",
                "Aramco Full structured",
                "Aramco Timesheet only",
                "NOC Invoice"
            ],
            value="NOC Timesheet"
        )
        generate_btn = gr.Button("Generate")
    
    clear_btn = gr.Button("Clear Document Context")
    
    output_text = gr.Textbox(
        label="Output",
        interactive=False
    )
    
    file_upload.change(
        fn=process_uploaded_file,
        inputs=[file_upload],
        outputs=[upload_status]
    )
    
    generate_btn.click(
        fn=bot_streaming,
        inputs=[prompt_dropdown],
        outputs=[output_text]
    )
    
    clear_btn.click(
        fn=clear_context,
        outputs=[upload_status]
    )

# Launch the interface
demo.launch(debug=True)