File size: 6,575 Bytes
df30043
686ef17
df30043
686ef17
 
 
 
 
 
e4611cf
 
 
5b73cc5
0644b4c
5b73cc5
0644b4c
df30043
15d82cf
0644b4c
f9b55bc
 
 
 
43bee1c
f9b55bc
 
 
 
 
 
 
 
0644b4c
e4611cf
 
 
 
5b73cc5
e4611cf
0644b4c
 
 
 
43bee1c
e4611cf
 
 
43bee1c
e4611cf
5b73cc5
 
0644b4c
f9b55bc
 
 
 
 
 
 
 
 
 
 
 
0644b4c
f9b55bc
 
 
 
 
0644b4c
121a196
0644b4c
686ef17
5b73cc5
686ef17
f9b55bc
 
 
 
43bee1c
5b73cc5
0644b4c
 
 
 
 
43bee1c
0644b4c
df30043
 
686ef17
f9b55bc
 
43bee1c
f9b55bc
 
3bc1ee9
 
 
 
 
 
 
 
43bee1c
 
 
 
 
686ef17
df30043
5b73cc5
df30043
488a981
686ef17
df30043
686ef17
df30043
686ef17
df30043
686ef17
 
 
 
0644b4c
f9b55bc
 
 
 
5b73cc5
43bee1c
f9b55bc
 
0644b4c
f9b55bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0b45d
f9b55bc
 
 
 
 
 
 
 
 
 
 
 
 
 
5c0b45d
5b73cc5
e4611cf
686ef17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz  # PyMuPDF
import io
import numpy as np

# Load model and processor
ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)

# Document state to track uploaded files
class DocumentState:
    def __init__(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None
        
    def clear(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None
        
doc_state = DocumentState()

# Function to convert PDF to images and extract text
def process_pdf_file(file_path):
    """Convert PDF to images and extract text using PyMuPDF."""
    doc = fitz.open(file_path)
    images = []
    text = ""
    
    # Process each page
    for page_num in range(doc.page_count):
        page = doc[page_num]
        text += f"Page {page_num + 1} content:\n{page.get_text()}\n"
        pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
        img_data = pix.tobytes("png")
        img = Image.open(io.BytesIO(img_data))
        images.append(img.convert("RGB"))
    
    doc.close()
    return images, text

# Function to process uploaded files (PDF or image)
def process_file(file):
    """Process either PDF or image file and update document state."""
    doc_state.clear()
    
    if isinstance(file, dict):
        file_path = file["path"]
    else:
        file_path = file
        
    if file_path.lower().endswith('.pdf'):
        doc_state.doc_type = 'pdf'
        doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
        return f"PDF processed. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
    else:
        doc_state.doc_type = 'image'
        doc_state.current_doc_images = [Image.open(file_path).convert("RGB")]
        return "Image loaded successfully. You can now ask questions about the content."

# Function to handle streaming responses from the model
@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=8192):
    txt = message["text"]
    messages = []
    
    # Process new file if provided
    if message.get("files") and len(message["files"]) > 0:
        process_file(message["files"][0])
    
    # Process history
    for i, msg in enumerate(history):
        if isinstance(msg[0], dict):  # Multimodal message (text + files)
            user_content = [{"type": "text", "text": msg[0]["text"]}]
            if "files" in msg[0] and len(msg[0]["files"]) > 0:
                user_content.append({"type": "image"})
            messages.append({"role": "user", "content": user_content})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
        elif isinstance(msg[0], str):  # Text-only message
            messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

    # Include document context in the current message
    if doc_state.current_doc_images:
        context = f"\nDocument context:\n{doc_state.current_doc_text}" if doc_state.current_doc_text else ""
        current_msg = f"{txt}{context}"
        messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})

    # Apply chat template to messages
    texts = processor.apply_chat_template(messages, add_generation_prompt=True)
    
    # Process inputs based on whether we have images
    if doc_state.current_doc_images:
        inputs = processor(
            text=texts,
            images=doc_state.current_doc_images[0:1],  # Only use first image
            return_tensors="pt"
        ).to("cuda")
    else:
        inputs = processor(text=texts, return_tensors="pt").to("cuda")
    
    streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

# Function to clear document context
def clear_context():
    """Clear the current document context."""
    doc_state.clear()
    return "Document context cleared. You can upload a new document."

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Document Analyzer with Chat Support")
    gr.Markdown("Upload a PDF or image and chat about its contents. For PDFs, all pages will be processed for visual analysis.")
    
    chatbot = gr.ChatInterface(
        fn=bot_streaming,
        title="Document Chat",
        examples=[
            [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
            [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
            [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
            [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
            [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
        ],
        textbox=gr.MultimodalTextbox(),
        additional_inputs=[
            gr.Slider(
                minimum=10,
                maximum=2048,
                value=8192,
                step=10,
                label="Maximum number of new tokens to generate",
            )
        ],
        cache_examples=False,
        stop_btn="Stop Generation",
        fill_height=True,
        multimodal=True
    )
    
    clear_btn = gr.Button("Clear Document Context")
    clear_btn.click(fn=clear_context)
    
    # Update accepted file types
    chatbot.textbox.file_types = ["image", "pdf","text"]

# Launch the interface
demo.launch(debug=True)