File size: 11,183 Bytes
67cc41f
686ef17
df30043
686ef17
 
 
 
 
 
e4611cf
 
 
cd3a11d
 
 
 
 
5b73cc5
0644b4c
4b69a7c
 
 
15d82cf
f9b55bc
 
 
 
43bee1c
f9b55bc
 
 
 
 
 
 
 
e4611cf
0f2aa55
cd3a11d
 
 
 
 
 
 
 
 
0f2aa55
cd3a11d
 
0f2aa55
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3a11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b73cc5
0f2aa55
 
cd3a11d
 
f9b55bc
0f2aa55
 
9e36f0e
 
 
 
 
 
cd3a11d
9e36f0e
 
 
 
 
 
 
cd3a11d
 
 
 
 
0f2aa55
9e36f0e
cd3a11d
 
 
 
 
 
 
 
 
 
 
 
9e36f0e
 
cd3a11d
 
 
f9b55bc
121a196
7c08af8
cd3a11d
7c08af8
 
 
c6ee6e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c08af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3a11d
 
 
 
 
7c08af8
cd3a11d
 
7c08af8
3bc1ee9
cd3a11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686ef17
f9b55bc
 
 
 
5b73cc5
43bee1c
f9b55bc
7c08af8
 
f9b55bc
0f2aa55
 
9e36f0e
 
0f2aa55
 
 
 
 
 
7c08af8
 
 
 
 
 
 
 
 
 
 
 
0f2aa55
 
7c08af8
 
 
f9b55bc
 
0f2aa55
 
 
 
 
f9b55bc
7c08af8
 
 
 
 
 
0f2aa55
 
 
 
5b73cc5
e4611cf
686ef17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer , AutoModel
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz  # PyMuPDF
import io
import numpy as np
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load model and processor
ckpt = "OpenGVLab/InternVL2_5-38B-MPO"
model = AutoModel.from_pretrained(ckpt, torch_dtype=torch.bfloat16,trust_remote_code=True).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt,trust_remote_code=True)

class DocumentState:
    def __init__(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None
        
    def clear(self):
        self.current_doc_images = []
        self.current_doc_text = ""
        self.doc_type = None
        
doc_state = DocumentState()

def process_pdf_file(file_path):
    """Convert PDF to images and extract text using PyMuPDF."""
    try:
        doc = fitz.open(file_path)
        images = []
        text = ""
        
        for page_num in range(doc.page_count):
            try:
                page = doc[page_num]
                page_text = page.get_text("text")
                if page_text.strip():
                    text += f"Page {page_num + 1}:\n{page_text}\n\n"
                
                zoom = 2
                mat = fitz.Matrix(zoom, zoom)
                pix = page.get_pixmap(matrix=mat, alpha=False)
                img_data = pix.tobytes("png")
                img = Image.open(io.BytesIO(img_data))
                img = img.convert("RGB")
                
                max_size = 1600
                if max(img.size) > max_size:
                    ratio = max_size / max(img.size)
                    new_size = tuple(int(dim * ratio) for dim in img.size)
                    img = img.resize(new_size, Image.Resampling.LANCZOS)
                
                images.append(img)
                
            except Exception as e:
                logger.error(f"Error processing page {page_num}: {str(e)}")
                continue
                
        doc.close()
        
        if not images:
            raise ValueError("No valid images could be extracted from the PDF")
            
        return images, text
        
    except Exception as e:
        logger.error(f"Error processing PDF file: {str(e)}")
        raise

def process_uploaded_file(file):
    """Process uploaded file and update document state."""
    try:
        doc_state.clear()
        
        if file is None:
            return "No file uploaded. Please upload a file."
        
        # Get the file path and extension
        if isinstance(file, dict):
            file_path = file["name"]
        else:
            file_path = file.name
            
        # Get file extension
        file_ext = file_path.lower().split('.')[-1]
        
        # Define allowed extensions
        image_extensions = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'}
        
        if file_ext == 'pdf':
            doc_state.doc_type = 'pdf'
            try:
                doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
                return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
            except Exception as e:
                return f"Error processing PDF: {str(e)}. Please try a different PDF file."
        elif file_ext in image_extensions:
            doc_state.doc_type = 'image'
            try:
                img = Image.open(file_path).convert("RGB")
                max_size = 1600
                if max(img.size) > max_size:
                    ratio = max_size / max(img.size)
                    new_size = tuple(int(dim * ratio) for dim in img.size)
                    img = img.resize(new_size, Image.Resampling.LANCZOS)
                doc_state.current_doc_images = [img]
                return "Image loaded successfully. You can now ask questions about the content."
            except Exception as e:
                return f"Error processing image: {str(e)}. Please try a different image file."
        else:
            return f"Unsupported file type: {file_ext}. Please upload a PDF or image file (PNG, JPG, JPEG, GIF, BMP, WEBP)."
    except Exception as e:
        logger.error(f"Error in process_file: {str(e)}")
        return "An error occurred while processing the file. Please try again."

@spaces.GPU()
def bot_streaming(prompt_option, max_new_tokens=8192):
    try:
        # Define predetermined prompts
        prompts = {
            "Timesheet Details (Full Extraction)": (
                """Extract structured information from the provided timesheet. The extracted details should include:

1. Personnel Details:

Name

Position Title

Work Location

Contractor Status (Yes/No)

NOC ID

Month and Year



2. Service and Activity Summary:

Regular Service Days (ONSHORE)

Standby Days (ONSHORE in Doha)

Offshore Days

Standby & Extended Hitch Days (OFFSHORE)

Extended Hitch Days (ONSHORE Rotational)

Service during Weekends & Public Holidays



3. Overtime and Compensation:

ONSHORE Overtime Hours (Over 8 hours)

OFFSHORE Overtime Hours (Over 12 hours)

Per Diem Days (ONSHORE/OFFSHORE Rotational Personnel)



4. Training and Travel:

Training Days

Travel Days



5. Totals:

Provide totals for all categories where applicable.




Ensure all extracted data is presented in a clean, structured format. Omit any irrelevant or unrecognizable content. Use the exact terminology and units (e.g., 'days,' 'hours') as found in the document."""
            ),
            "Timesheet Details (Basic Extraction)": (
                "Based on the provided timesheet details, extract the following information:\n"
                "   - Full name of the person\n"
                "   - Position title of the person\n"
                "   - Work location\n"
                "   - Contractor's name\n"
                "   - NOC ID\n"
                "   - Month and year (in MM/YYYY format)"
            ),
            "Structured Data Extraction": (
                "You are an advanced data extraction assistant. Your task is to parse structured input text and extract key data points into clearly defined categories. Focus only on the requested details, ensuring accuracy and proper grouping. Below is the format for extracting the data:\n\n"
                "---\n"
                "Project Information\n\n"
                "Project Name:\n\n"
                "Project and Package:\n\n"
                "RPO Number:\n\n"
                "PMC Name:\n\n"
                "Project Location:\n\n"
                "Year:\n\n"
                "Month:\n\n"
                "Timesheet Details\n\n"
                "Week X (Date)\n\n"
                "Holidays:\n\n"
                "Regular Hours:\n\n"
                "Overtime Hours:\n\n"
                "Total Hours:\n\n"
                "Comments:\n\n"
                "Additional Data\n\n"
                "Reviewed By:\n\n"
                "Date of Review:\n\n"
                "Position:\n\n"
                "Supervisor Business:\n\n"
                "Date of Approval:\n\n"
                "---\n\n"
                "Ensure the extracted data strictly follows the format above and is organized by category. Ignore unrelated text. Respond only with the formatted output."
            )
        }
        
        # Get the selected prompt
        selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
        
        messages = []
        
        # Include document context
        if doc_state.current_doc_images:
            context = f"\nDocument context:\n{doc_state.current_doc_text}" if doc_state.current_doc_text else ""
            current_msg = f"{selected_prompt}{context}"
            messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
        else:
            messages.append({"role": "user", "content": [{"type": "text", "text": selected_prompt}]})

        # Process inputs
        texts = processor.apply_chat_template(messages, add_generation_prompt=True)
        
        try:
            if doc_state.current_doc_images:
                inputs = processor(
                    text=texts,
                    images=doc_state.current_doc_images[0:1],
                    return_tensors="pt"
                ).to("cuda")
            else:
                inputs = processor(text=texts, return_tensors="pt").to("cuda")
                
            streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
            generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
            
            thread = Thread(target=model.generate, kwargs=generation_kwargs)
            thread.start()
            
            buffer = ""
            for new_text in streamer:
                buffer += new_text
                time.sleep(0.01)
                yield buffer
                
        except Exception as e:
            logger.error(f"Error in model processing: {str(e)}")
            yield "An error occurred while processing your request. Please try again."
            
    except Exception as e:
        logger.error(f"Error in bot_streaming: {str(e)}")
        yield "An error occurred. Please try again."

def clear_context():
    """Clear the current document context."""
    doc_state.clear()
    return "Document context cleared. You can upload a new document."

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Document Analyzer with Predetermined Prompts")
    gr.Markdown("Upload a PDF or image (PNG, JPG, JPEG, GIF, BMP, WEBP) and select a prompt to analyze its contents.")
    
    with gr.Row():
        file_upload = gr.File(
            label="Upload Document",
            file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
        )
        upload_status = gr.Textbox(
            label="Upload Status",
            interactive=False
        )
    
    with gr.Row():
        prompt_dropdown = gr.Dropdown(
            label="Select Prompt",
            choices=[
                "Timesheet Details (Full Extraction)",
                "Timesheet Details (Basic Extraction)",
                "Structured Data Extraction"
            ],
            value="Timesheet Details (Full Extraction)"
        )
        generate_btn = gr.Button("Generate")
    
    clear_btn = gr.Button("Clear Document Context")
    
    output_text = gr.Textbox(
        label="Output",
        interactive=False
    )
    
    file_upload.change(
        fn=process_uploaded_file,
        inputs=[file_upload],
        outputs=[upload_status]
    )
    
    generate_btn.click(
        fn=bot_streaming,
        inputs=[prompt_dropdown],
        outputs=[output_text]
    )
    
    clear_btn.click(
        fn=clear_context,
        outputs=[upload_status]
    )

# Launch the interface
demo.launch(debug=True)