Spaces:
Running
Running
File size: 11,183 Bytes
67cc41f 686ef17 df30043 686ef17 e4611cf cd3a11d 5b73cc5 0644b4c 4b69a7c 15d82cf f9b55bc 43bee1c f9b55bc e4611cf 0f2aa55 cd3a11d 0f2aa55 cd3a11d 0f2aa55 cd3a11d 5b73cc5 0f2aa55 cd3a11d f9b55bc 0f2aa55 9e36f0e cd3a11d 9e36f0e cd3a11d 0f2aa55 9e36f0e cd3a11d 9e36f0e cd3a11d f9b55bc 121a196 7c08af8 cd3a11d 7c08af8 c6ee6e7 7c08af8 cd3a11d 7c08af8 cd3a11d 7c08af8 3bc1ee9 cd3a11d 686ef17 f9b55bc 5b73cc5 43bee1c f9b55bc 7c08af8 f9b55bc 0f2aa55 9e36f0e 0f2aa55 7c08af8 0f2aa55 7c08af8 f9b55bc 0f2aa55 f9b55bc 7c08af8 0f2aa55 5b73cc5 e4611cf 686ef17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer , AutoModel
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz # PyMuPDF
import io
import numpy as np
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load model and processor
ckpt = "OpenGVLab/InternVL2_5-38B-MPO"
model = AutoModel.from_pretrained(ckpt, torch_dtype=torch.bfloat16,trust_remote_code=True).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt,trust_remote_code=True)
class DocumentState:
def __init__(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
def clear(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
doc_state = DocumentState()
def process_pdf_file(file_path):
"""Convert PDF to images and extract text using PyMuPDF."""
try:
doc = fitz.open(file_path)
images = []
text = ""
for page_num in range(doc.page_count):
try:
page = doc[page_num]
page_text = page.get_text("text")
if page_text.strip():
text += f"Page {page_num + 1}:\n{page_text}\n\n"
zoom = 2
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat, alpha=False)
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data))
img = img.convert("RGB")
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
images.append(img)
except Exception as e:
logger.error(f"Error processing page {page_num}: {str(e)}")
continue
doc.close()
if not images:
raise ValueError("No valid images could be extracted from the PDF")
return images, text
except Exception as e:
logger.error(f"Error processing PDF file: {str(e)}")
raise
def process_uploaded_file(file):
"""Process uploaded file and update document state."""
try:
doc_state.clear()
if file is None:
return "No file uploaded. Please upload a file."
# Get the file path and extension
if isinstance(file, dict):
file_path = file["name"]
else:
file_path = file.name
# Get file extension
file_ext = file_path.lower().split('.')[-1]
# Define allowed extensions
image_extensions = {'png', 'jpg', 'jpeg', 'gif', 'bmp', 'webp'}
if file_ext == 'pdf':
doc_state.doc_type = 'pdf'
try:
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
except Exception as e:
return f"Error processing PDF: {str(e)}. Please try a different PDF file."
elif file_ext in image_extensions:
doc_state.doc_type = 'image'
try:
img = Image.open(file_path).convert("RGB")
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
doc_state.current_doc_images = [img]
return "Image loaded successfully. You can now ask questions about the content."
except Exception as e:
return f"Error processing image: {str(e)}. Please try a different image file."
else:
return f"Unsupported file type: {file_ext}. Please upload a PDF or image file (PNG, JPG, JPEG, GIF, BMP, WEBP)."
except Exception as e:
logger.error(f"Error in process_file: {str(e)}")
return "An error occurred while processing the file. Please try again."
@spaces.GPU()
def bot_streaming(prompt_option, max_new_tokens=8192):
try:
# Define predetermined prompts
prompts = {
"Timesheet Details (Full Extraction)": (
"""Extract structured information from the provided timesheet. The extracted details should include:
1. Personnel Details:
Name
Position Title
Work Location
Contractor Status (Yes/No)
NOC ID
Month and Year
2. Service and Activity Summary:
Regular Service Days (ONSHORE)
Standby Days (ONSHORE in Doha)
Offshore Days
Standby & Extended Hitch Days (OFFSHORE)
Extended Hitch Days (ONSHORE Rotational)
Service during Weekends & Public Holidays
3. Overtime and Compensation:
ONSHORE Overtime Hours (Over 8 hours)
OFFSHORE Overtime Hours (Over 12 hours)
Per Diem Days (ONSHORE/OFFSHORE Rotational Personnel)
4. Training and Travel:
Training Days
Travel Days
5. Totals:
Provide totals for all categories where applicable.
Ensure all extracted data is presented in a clean, structured format. Omit any irrelevant or unrecognizable content. Use the exact terminology and units (e.g., 'days,' 'hours') as found in the document."""
),
"Timesheet Details (Basic Extraction)": (
"Based on the provided timesheet details, extract the following information:\n"
" - Full name of the person\n"
" - Position title of the person\n"
" - Work location\n"
" - Contractor's name\n"
" - NOC ID\n"
" - Month and year (in MM/YYYY format)"
),
"Structured Data Extraction": (
"You are an advanced data extraction assistant. Your task is to parse structured input text and extract key data points into clearly defined categories. Focus only on the requested details, ensuring accuracy and proper grouping. Below is the format for extracting the data:\n\n"
"---\n"
"Project Information\n\n"
"Project Name:\n\n"
"Project and Package:\n\n"
"RPO Number:\n\n"
"PMC Name:\n\n"
"Project Location:\n\n"
"Year:\n\n"
"Month:\n\n"
"Timesheet Details\n\n"
"Week X (Date)\n\n"
"Holidays:\n\n"
"Regular Hours:\n\n"
"Overtime Hours:\n\n"
"Total Hours:\n\n"
"Comments:\n\n"
"Additional Data\n\n"
"Reviewed By:\n\n"
"Date of Review:\n\n"
"Position:\n\n"
"Supervisor Business:\n\n"
"Date of Approval:\n\n"
"---\n\n"
"Ensure the extracted data strictly follows the format above and is organized by category. Ignore unrelated text. Respond only with the formatted output."
)
}
# Get the selected prompt
selected_prompt = prompts.get(prompt_option, "Invalid prompt selected.")
messages = []
# Include document context
if doc_state.current_doc_images:
context = f"\nDocument context:\n{doc_state.current_doc_text}" if doc_state.current_doc_text else ""
current_msg = f"{selected_prompt}{context}"
messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": selected_prompt}]})
# Process inputs
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
try:
if doc_state.current_doc_images:
inputs = processor(
text=texts,
images=doc_state.current_doc_images[0:1],
return_tensors="pt"
).to("cuda")
else:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
except Exception as e:
logger.error(f"Error in model processing: {str(e)}")
yield "An error occurred while processing your request. Please try again."
except Exception as e:
logger.error(f"Error in bot_streaming: {str(e)}")
yield "An error occurred. Please try again."
def clear_context():
"""Clear the current document context."""
doc_state.clear()
return "Document context cleared. You can upload a new document."
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Document Analyzer with Predetermined Prompts")
gr.Markdown("Upload a PDF or image (PNG, JPG, JPEG, GIF, BMP, WEBP) and select a prompt to analyze its contents.")
with gr.Row():
file_upload = gr.File(
label="Upload Document",
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
)
upload_status = gr.Textbox(
label="Upload Status",
interactive=False
)
with gr.Row():
prompt_dropdown = gr.Dropdown(
label="Select Prompt",
choices=[
"Timesheet Details (Full Extraction)",
"Timesheet Details (Basic Extraction)",
"Structured Data Extraction"
],
value="Timesheet Details (Full Extraction)"
)
generate_btn = gr.Button("Generate")
clear_btn = gr.Button("Clear Document Context")
output_text = gr.Textbox(
label="Output",
interactive=False
)
file_upload.change(
fn=process_uploaded_file,
inputs=[file_upload],
outputs=[upload_status]
)
generate_btn.click(
fn=bot_streaming,
inputs=[prompt_dropdown],
outputs=[output_text]
)
clear_btn.click(
fn=clear_context,
outputs=[upload_status]
)
# Launch the interface
demo.launch(debug=True) |