File size: 4,948 Bytes
7a0f03d 9fe2e05 b448191 dc99e66 b51fe95 9ebd8d9 5985f75 6564690 7a0f03d dc99e66 b448191 5985f75 b448191 6997dfd dc99e66 6997dfd b448191 5985f75 dc99e66 6997dfd dc99e66 b448191 dc99e66 5985f75 63c1133 5985f75 5054e30 5985f75 b7b439e 0c16d4c 5054e30 6997dfd 5054e30 6997dfd b7b439e 5054e30 5985f75 f21cdf6 680827f 5985f75 680827f 5985f75 dc99e66 9fe2e05 7a0f03d c9690b4 9fe2e05 7a0f03d dc99e66 9fe2e05 5985f75 9fe2e05 c9690b4 dc99e66 9fe2e05 7a0f03d dc99e66 7a0f03d 9fe2e05 c9690b4 7a0f03d 9fe2e05 c9690b4 9fe2e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import os
import time
import streamlit as st
from transformers import AutoTokenizer, AutoModel
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
import torch
from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
from pydantic import Field
from groq import Groq
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چتبات ارتش - فقط از PDF", page_icon="🪖", layout="wide")
# ----------------- بارگذاری مدل FarsiBERT -----------------
model_name = "HooshvareLab/bert-fa-zwnj-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# ----------------- لود PDF و ساخت ایندکس -----------------
@st.cache_resource
def build_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
loader = PyPDFLoader("test1.pdf")
pages = loader.load()
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
texts = []
for page in pages:
texts.extend(splitter.split_text(page.page_content))
documents = [LangchainDocument(page_content=t) for t in texts]
embeddings = []
for doc in documents:
inputs = tokenizer(doc.page_content, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1).numpy())
return documents, embeddings
# ----------------- تعریف LLM از Groq -----------------
groq_api_key = "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"
# مستقیماً از OpenAI بدون کلاس اضافه
llm = OpenAI(
base_url="https://api.groq.com/openai/v1",
api_key="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",
model_name="mixtral-8x7b-32768"
)
# ----------------- تعریف SimpleRetriever -----------------
class SimpleRetriever(BaseRetriever):
documents: List[Document] = Field(...)
embeddings: List = Field(...)
def _get_relevant_documents(self, query: str) -> List[Document]:
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
query_embedding = outputs.last_hidden_state.mean(dim=1).numpy()
similarities = []
for doc_embedding in self.embeddings:
similarity = (query_embedding * doc_embedding).sum()
similarities.append(similarity)
ranked_docs = sorted(zip(similarities, self.documents), reverse=True)
return [doc for _, doc in ranked_docs[:5]]
# ----------------- ساخت Index -----------------
documents, embeddings = build_pdf_index()
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)
# ----------------- ساخت Chain -----------------
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
input_key="question"
)
# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# ----------------- نمایش پیامهای قبلی -----------------
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
# ----------------- پاسخ مدل -----------------
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن از روی PDF...")
try:
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
answer = response.strip()
except Exception as e:
answer = f"خطا در پاسخدهی: {str(e)}"
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|