File size: 2,605 Bytes
af98023
c3a2cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# model_loader.py
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from transformers import pipeline

# Classifier Model (XLM-RoBERTa for toxicity classification)
class ClassifierModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.load_model()

    def load_model(self):
        """
        Load the fine-tuned XLM-RoBERTa model and tokenizer for toxic comment classification.
        """
        try:
            model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone"
            self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
            self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
        except Exception as e:
            raise Exception(f"Error loading classifier model or tokenizer: {str(e)}")

# Paraphraser Model (Granite 3.2-2B-Instruct for paraphrasing)
class ParaphraserModel:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.load_model()

    def load_model(self):
        """
        Load the Granite 3.2-2B-Instruct model and tokenizer for paraphrasing.
        """
        try:
            model_name = "ibm-granite/granite-3.2-2b-instruct"
            self.model = AutoModelForCausalLM.from_pretrained(model_name)
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        except Exception as e:
            raise Exception(f"Error loading paraphrase model or tokenizer: {str(e)}")

# Metrics Models (Sentence-BERT, Emotion Classifier, NLI)
class MetricsModels:
    def __init__(self):
        self.sentence_bert_model = None
        self.emotion_classifier = None
        self.nli_classifier = None

    def load_sentence_bert(self):
        if self.sentence_bert_model is None:
            self.sentence_bert_model = SentenceTransformer('all-MiniLM-L6-v2')
        return self.sentence_bert_model

    def load_emotion_classifier(self):
        if self.emotion_classifier is None:
            self.emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=None)
        return self.emotion_classifier

    def load_nli_classifier(self):
        if self.nli_classifier is None:
            self.nli_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
        return self.nli_classifier

# Singleton instances
classifier_model = ClassifierModel()
paraphraser_model = ParaphraserModel()
metrics_models = MetricsModels()