Spaces:
Sleeping
Sleeping
Update model_loader.py
Browse files- model_loader.py +24 -10
model_loader.py
CHANGED
@@ -1,19 +1,33 @@
|
|
|
|
1 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
2 |
|
3 |
-
def
|
4 |
"""
|
5 |
-
Load the fine-tuned XLM-RoBERTa model and tokenizer.
|
6 |
-
Returns the model and tokenizer
|
7 |
"""
|
8 |
try:
|
9 |
-
model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone"
|
10 |
-
# If the model is local: model_name = "./model"
|
11 |
-
|
12 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
14 |
return model, tokenizer
|
15 |
except Exception as e:
|
16 |
-
raise Exception(f"Error loading model or tokenizer: {str(e)}")
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model_loader.py
|
2 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
from transformers import AutoModelForCausalLM
|
4 |
|
5 |
+
def load_classifier_model_and_tokenizer():
|
6 |
"""
|
7 |
+
Load the fine-tuned XLM-RoBERTa model and tokenizer for toxic comment classification.
|
8 |
+
Returns the model and tokenizer.
|
9 |
"""
|
10 |
try:
|
11 |
+
model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone"
|
|
|
|
|
12 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
14 |
return model, tokenizer
|
15 |
except Exception as e:
|
16 |
+
raise Exception(f"Error loading classifier model or tokenizer: {str(e)}")
|
17 |
|
18 |
+
def load_paraphrase_model_and_tokenizer():
|
19 |
+
"""
|
20 |
+
Load the Granite 3.2-2B-Instruct model and tokenizer for paraphrasing.
|
21 |
+
Returns the model and tokenizer.
|
22 |
+
"""
|
23 |
+
try:
|
24 |
+
model_name = "ibm-granite/granite-3.2-2b-instruct"
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
+
return model, tokenizer
|
28 |
+
except Exception as e:
|
29 |
+
raise Exception(f"Error loading paraphrase model or tokenizer: {str(e)}")
|
30 |
+
|
31 |
+
# Load both models and tokenizers at startup
|
32 |
+
classifier_model, classifier_tokenizer = load_classifier_model_and_tokenizer()
|
33 |
+
paraphrase_model, paraphrase_tokenizer = load_paraphrase_model_and_tokenizer()
|