Spaces:
Sleeping
Sleeping
Update model_loader.py
Browse files- model_loader.py +66 -32
model_loader.py
CHANGED
@@ -1,33 +1,67 @@
|
|
1 |
# model_loader.py
|
2 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# model_loader.py
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
# Classifier Model (XLM-RoBERTa for toxicity classification)
|
7 |
+
class ClassifierModel:
|
8 |
+
def __init__(self):
|
9 |
+
self.model = None
|
10 |
+
self.tokenizer = None
|
11 |
+
self.load_model()
|
12 |
+
|
13 |
+
def load_model(self):
|
14 |
+
"""
|
15 |
+
Load the fine-tuned XLM-RoBERTa model and tokenizer for toxic comment classification.
|
16 |
+
"""
|
17 |
+
try:
|
18 |
+
model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone"
|
19 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
21 |
+
except Exception as e:
|
22 |
+
raise Exception(f"Error loading classifier model or tokenizer: {str(e)}")
|
23 |
+
|
24 |
+
# Paraphraser Model (Granite 3.2-2B-Instruct for paraphrasing)
|
25 |
+
class ParaphraserModel:
|
26 |
+
def __init__(self):
|
27 |
+
self.model = None
|
28 |
+
self.tokenizer = None
|
29 |
+
self.load_model()
|
30 |
+
|
31 |
+
def load_model(self):
|
32 |
+
"""
|
33 |
+
Load the Granite 3.2-2B-Instruct model and tokenizer for paraphrasing.
|
34 |
+
"""
|
35 |
+
try:
|
36 |
+
model_name = "ibm-granite/granite-3.2-2b-instruct"
|
37 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
38 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
+
except Exception as e:
|
40 |
+
raise Exception(f"Error loading paraphrase model or tokenizer: {str(e)}")
|
41 |
+
|
42 |
+
# Metrics Models (Sentence-BERT, Emotion Classifier, NLI)
|
43 |
+
class MetricsModels:
|
44 |
+
def __init__(self):
|
45 |
+
self.sentence_bert_model = None
|
46 |
+
self.emotion_classifier = None
|
47 |
+
self.nli_classifier = None
|
48 |
+
|
49 |
+
def load_sentence_bert(self):
|
50 |
+
if self.sentence_bert_model is None:
|
51 |
+
self.sentence_bert_model = SentenceTransformer('all-MiniLM-L6-v2')
|
52 |
+
return self.sentence_bert_model
|
53 |
+
|
54 |
+
def load_emotion_classifier(self):
|
55 |
+
if self.emotion_classifier is None:
|
56 |
+
self.emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=None)
|
57 |
+
return self.emotion_classifier
|
58 |
+
|
59 |
+
def load_nli_classifier(self):
|
60 |
+
if self.nli_classifier is None:
|
61 |
+
self.nli_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
62 |
+
return self.nli_classifier
|
63 |
+
|
64 |
+
# Singleton instances
|
65 |
+
classifier_model = ClassifierModel()
|
66 |
+
paraphraser_model = ParaphraserModel()
|
67 |
+
metrics_models = MetricsModels()
|