Spaces:
Running
Running
File size: 39,237 Bytes
f2789f8 3cb68d0 f2789f8 3cb68d0 f2789f8 3cb68d0 f2789f8 3cb68d0 f2789f8 3cb68d0 f2789f8 3cb68d0 3824258 f2789f8 3cb68d0 f2789f8 3cb68d0 f2789f8 15d1512 5ff4511 f2789f8 7b415bc 5ff4511 7919ea6 7b415bc 7919ea6 15d1512 7919ea6 7b415bc b19b670 7b415bc b19b670 7b415bc 5ff4511 7b415bc b19b670 7b415bc 5ff4511 b19b670 5ff4511 b19b670 7919ea6 7b415bc 7919ea6 7b415bc 7919ea6 7b415bc 7919ea6 7b415bc 7919ea6 7b415bc 7919ea6 7b415bc 15d1512 7b415bc f2789f8 7b415bc 15d1512 5ff4511 15d1512 f2789f8 15d1512 5ff4511 15d1512 f2789f8 9c621d2 f2789f8 3cb68d0 f2789f8 3cb68d0 f2789f8 15d1512 f2789f8 3824258 f2789f8 3e83ec5 f2789f8 dee760c 3cb68d0 dee760c 7b415bc 446912b 15d1512 7919ea6 446912b 1c9aec6 7919ea6 446912b 15d1512 7919ea6 1c9aec6 446912b 15d1512 7919ea6 446912b 15d1512 7919ea6 1c9aec6 446912b 15d1512 7919ea6 446912b 1c9aec6 68b87e8 446912b 9fd65b3 7919ea6 9fd65b3 606890c 9fd65b3 68b87e8 7919ea6 68b87e8 9fd65b3 606890c 7919ea6 606890c 7919ea6 9fd65b3 606890c 7919ea6 9fd65b3 446912b 1c9aec6 3cb68d0 dee760c 3cb68d0 9873c68 3cb68d0 9873c68 3cb68d0 91fc69d 9873c68 9c621d2 9873c68 15d1512 7b415bc 91fc69d 15d1512 9873c68 9c621d2 15d1512 9873c68 15d1512 9873c68 15d1512 9873c68 3cb68d0 9873c68 15d1512 9873c68 9c621d2 9873c68 7b415bc 15d1512 7b415bc 18cfdec 9c621d2 7b415bc 9c621d2 3cb68d0 9c621d2 3cb68d0 3824258 18cfdec dee760c f2789f8 8889d78 7919ea6 f2789f8 9c621d2 f2789f8 3824258 f2789f8 3cb68d0 8889d78 3cb68d0 86ae79c 448dc2f 86ae79c 448dc2f 86ae79c 0f500af 86ae79c 8889d78 e77df83 3cb68d0 e77df83 f2789f8 3cb68d0 f2789f8 e77df83 15d1512 e77df83 18cfdec f2789f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 |
import streamlit as st
import yfinance as yf
import alpaca_trade_api as alpaca
from newsapi import NewsApiClient
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from datetime import datetime, timedelta
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import logging
import threading
import time
import json
import os
import plotly.graph_objs as go
from sklearn.preprocessing import minmax_scale
from plotly.subplots import make_subplots
# Configure logging with timestamps
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S"
)
logger = logging.getLogger(__name__)
# Use session state keys instead of file paths
AUTO_TRADE_LOG_KEY = "auto_trade_log" # Session state key for trade log
AUTO_TRADE_INTERVAL = 10800 # Interval in seconds (e.g., 10800 seconds = 3 hours)
st.set_page_config(layout="wide")
class AlpacaTrader:
def __init__(self, API_KEY, API_SECRET, BASE_URL):
self.alpaca = alpaca.REST(API_KEY, API_SECRET, BASE_URL)
self.cash = 0
self.holdings = {}
self.trades = []
def get_market_status(self):
return self.alpaca.get_clock().is_open
def buy(self, symbol, qty, reason=None):
try:
# Ensure at least $1000 in cash before buying
account = self.alpaca.get_account()
cash_balance = float(account.cash)
if cash_balance < 1000:
logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.")
return None
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day')
if reason:
logger.info(f"Bought {qty} shares of {symbol} [Reason: {reason}]")
else:
logger.info(f"Bought {qty} shares of {symbol}")
# Record the trade
if order:
self.trades.append({
'symbol': symbol,
'qty': qty,
'action': 'Buy',
'time': datetime.now(),
'reason': reason
})
return order
except Exception as e:
logger.error(f"Error buying {symbol}: {e}")
return None
def sell(self, symbol, qty, reason=None):
# Check if position exists and has enough quantity before attempting to sell
positions = {p.symbol: float(p.qty) for p in self.alpaca.list_positions()}
if symbol not in positions:
logger.warning(f"No position in {symbol}. Sell not attempted.")
return None
if positions[symbol] < qty:
logger.warning(f"Not enough shares to sell: {qty} requested, {positions[symbol]} available for {symbol}. Sell not attempted.")
return None
try:
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day')
if reason:
logger.info(f"Sold {qty} shares of {symbol} [Reason: {reason}]")
else:
logger.info(f"Sold {qty} shares of {symbol}")
# Record the trade
if order:
self.trades.append({
'symbol': symbol,
'qty': qty,
'action': 'Sell',
'time': datetime.now(),
'reason': reason
})
return order
except Exception as e:
logger.error(f"Error selling {symbol}: {e}")
return None
def getHoldings(self):
positions = self.alpaca.list_positions()
for position in positions:
self.holdings[position.symbol] = float(position.market_value)
# Return holdings as a dictionary for internal use
return self.holdings
def getCash(self):
return self.alpaca.get_account().cash
def update_portfolio(self, symbol, price, qty, action):
if action == 'buy':
self.cash -= price * qty
if symbol in self.holdings:
self.holdings[symbol] += price * qty
else:
self.holdings[symbol] = price * qty
elif action == 'sell':
self.cash += price * qty
self.holdings[symbol] -= price * qty
if self.holdings[symbol] <= 0:
del self.holdings[symbol]
self.trades.append({'symbol': symbol, 'price': price, 'qty': qty, 'action': action, 'time': datetime.now()})
class NewsSentiment:
def __init__(self, API_KEY):
self.newsapi = NewsApiClient(api_key=API_KEY)
self.sia = SentimentIntensityAnalyzer()
self.alpha_vantage_api_key = st.secrets.get("ALPHA_VANTAGE_API_KEY")
# Try to get Alpaca API for news fallback
try:
self.alpaca_api = alpaca.REST(
st.secrets.get("ALPACA_API_KEY"),
st.secrets.get("ALPACA_SECRET_KEY"),
"https://paper-api.alpaca.markets"
)
except Exception as e:
logger.error(f"Could not initialize Alpaca API for news fallback: {e}")
self.alpaca_api = None
def get_sentiment_and_headlines(self, symbol):
"""
Try NewsAPI first, fallback to Alpha Vantage, then Alpaca news if needed.
Returns (sentiment, headlines, source, avg_score).
"""
# Try NewsAPI
try:
articles = self.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', page=1)
headlines = [a['title'] for a in articles.get('articles', [])[:5]]
if headlines:
sentiment, avg_score = self._calculate_sentiment(headlines, return_score=True)
logger.info(f"NewsAPI sentiment for {symbol}: {sentiment} | Headlines: {headlines}")
return sentiment, headlines, "NewsAPI", avg_score
else:
logger.warning(f"NewsAPI returned no headlines for {symbol}.")
except Exception as e:
logger.error(f"NewsAPI error for {symbol}: {e}")
logger.info(f"Falling back to Alpha Vantage for {symbol} sentiment and headlines.")
# Fallback to Alpha Vantage
try:
if self.alpha_vantage_api_key:
import requests
url = (
f"https://www.alphavantage.co/query?function=NEWS_SENTIMENT&tickers={symbol}"
f"&apikey={self.alpha_vantage_api_key}"
)
resp = requests.get(url)
data = resp.json()
headlines = [item.get("title") for item in data.get("feed", [])[:5] if item.get("title")]
if headlines:
sentiment, avg_score = self._calculate_sentiment(headlines, return_score=True)
logger.info(f"Alpha Vantage sentiment for {symbol}: {sentiment} | Headlines: {headlines}")
return sentiment, headlines, "AlphaVantage", avg_score
else:
logger.warning(f"Alpha Vantage returned no headlines for {symbol}.")
except Exception as e:
logger.error(f"Alpha Vantage error for {symbol}: {e}")
# Fallback to Alpaca News API
try:
if self.alpaca_api:
news_items = self.alpaca_api.get_news(symbol, limit=5)
headlines = [item.headline for item in news_items if hasattr(item, "headline")]
if headlines:
sentiment, avg_score = self._calculate_sentiment(headlines, return_score=True)
logger.info(f"Alpaca News sentiment for {symbol}: {sentiment} | Headlines: {headlines}")
return sentiment, headlines, "AlpacaNews", avg_score
else:
logger.warning(f"Alpaca News returned no headlines for {symbol}.")
except Exception as e:
logger.error(f"Alpaca News error for {symbol}: {e}")
logger.info(
f"No sentiment/headlines available for {symbol} from NewsAPI, Alpha Vantage, or Alpaca News."
)
return None, [], None, None
def _calculate_sentiment(self, headlines, return_score=False):
if not headlines:
return (None, None) if return_score else None
compound_score = sum(self.sia.polarity_scores(title)['compound'] for title in headlines)
avg_score = compound_score / len(headlines)
if avg_score > 0.1:
sentiment = 'Positive'
elif avg_score < -0.1:
sentiment = 'Negative'
else:
sentiment = 'Neutral'
return (sentiment, avg_score) if return_score else sentiment
def get_sentiment_bulk(self, symbols):
"""
Bulk sentiment for a list of symbols using NewsAPI only (for auto-trade).
Returns dict: symbol -> (sentiment, source).
"""
sentiment = {}
for symbol in symbols:
try:
articles = self.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', page=1)
headlines = [a['title'] for a in articles.get('articles', [])[:5]]
if headlines:
s = self._calculate_sentiment(headlines)
logger.info(f"NewsAPI sentiment for {symbol}: {s} | Headlines: {headlines}")
sentiment[symbol] = (s, "NewsAPI")
else:
# fallback to Alpha Vantage
s, _, src, _ = self.get_sentiment_and_headlines(symbol)
sentiment[symbol] = (s, src)
except Exception as e:
logger.error(f"Error getting news for {symbol}: {e}")
# fallback to Alpha Vantage
s, _, src, _ = self.get_sentiment_and_headlines(symbol)
sentiment[symbol] = (s, src)
return sentiment
class StockAnalyzer:
def __init__(self, alpaca):
self.alpaca = alpaca
self.symbols = self.get_top_volume_stocks()
# Build a symbol->name mapping for use in plots/tables
self.symbol_to_name = self.get_symbol_to_name()
def get_symbol_to_name(self):
# Get mapping from symbol to company name using Alpaca asset info
assets = self.alpaca.alpaca.list_assets(status='active')
return {asset.symbol: asset.name for asset in assets}
def get_bars(self, alp_api, symbols, timeframe='1D'):
bars_data = {}
try:
bars = alp_api.get_bars(list(symbols), timeframe).df
if 'symbol' not in bars.columns:
logger.warning("The 'symbol' column is missing in the bars DataFrame.")
return {symbol: {'bar_data': None} for symbol in symbols}
for symbol in symbols:
symbol_bars = bars[bars['symbol'] == symbol]
if not symbol_bars.empty:
bar_info = symbol_bars.iloc[-1]
# Handle index type for timestamp
if isinstance(bar_info.name, tuple):
timestamp = bar_info.name[1].isoformat()
else:
timestamp = bar_info.name.isoformat()
bars_data[symbol] = {
'bar_data': {
'volume': bar_info['volume'],
'open': bar_info['open'],
'high': bar_info['high'],
'low': bar_info['low'],
'close': bar_info['close'],
'timestamp': timestamp
}
}
else:
logger.debug(f"No bar data for symbol: {symbol}")
bars_data[symbol] = {'bar_data': None}
except Exception as e:
logger.warning(f"Error fetching bars in batch: {e}")
for symbol in symbols:
bars_data[symbol] = {'bar_data': None}
return bars_data
def assetswithconditions(self,stock_assets):
cond = {
'class': ['us_equity'],
'exchange': ['NASDAQ', 'NYSE'],
'status': ['active'],
'tradable': [True],
'marginable': [True],
'shortable': [True],
'easy_to_borrow': [True],
'fractionable': [True]
}
assets_with_conditions = []
asset_symbol_dict = {}
for asset in stock_assets:
# Skip symbols with '.' or '/' (preferred shares, warrants, etc.)
if '.' in asset.symbol or '/' in asset.symbol:
continue
if (asset.__getattr__('class') in cond['class'] and
asset.exchange in cond['exchange'] and
asset.status in cond['status'] and
asset.tradable in cond['tradable'] and
asset.marginable in cond['marginable'] and
asset.shortable in cond['shortable'] and
asset.easy_to_borrow in cond['easy_to_borrow'] and
asset.fractionable in cond['fractionable']
):
assets_with_conditions.append(asset)
asset_no_comma = asset.name.replace(',', '')
asset_first_word = asset_no_comma.split()[0]
asset_symbol_dict[asset.symbol] = asset._raw
asset_symbol_dict[asset.symbol]['firstWord'] = asset_first_word
sorted_dict = dict(sorted(asset_symbol_dict.items()))
# print(f'Length of Alpaca assets with conditions = {len(assets_with_conditions)}')
# print(f'assets_with_conditions = {assets_with_conditions}')
return assets_with_conditions, sorted_dict
def get_top_volume_stocks(self,num_stocks=10):
try:
# Get all tradable assets
assets = self.alpaca.alpaca.list_assets(status='active')
# tradable_assets = {asset.symbol: {} for asset in assets if asset.tradable}
# print(f'tradable_assets = {tradable_assets}')
assets_with_conditions, sorted_dict = self.assetswithconditions(assets)
# print(f'sorted_dict = {sorted_dict}')
# Fetch bar data for all tradable assets
# print(f'sorted_dict.keys()={sorted_dict.keys()}')
tradable_assets = self.get_bars(self.alpaca.alpaca, sorted_dict.keys(), timeframe='1D')
# Extract volume and calculate the top 10 stocks by volume
volume_data = {
symbol: info['bar_data']['volume']
for symbol, info in tradable_assets.items()
if info['bar_data'] is not None
}
top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks]
logger.info(f'top_volume_stocks = {top_volume_stocks}')
return top_volume_stocks
except Exception as e:
logger.error(f"Error fetching top volume stocks: {e}")
return []
def get_historical_data(self, symbols):
data = {}
for symbol in symbols:
try:
# Pull historical data from 2000-01-01 to today, daily interval
ticker = yf.Ticker(symbol)
hist = ticker.history(start='2023-01-01', end=datetime.now().strftime('%Y-%m-%d'), interval='1d')
data[symbol] = hist
except Exception as e:
logger.error(f"Error getting data for {symbol}: {e}")
return data
class TradingApp:
def __init__(self):
self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
self.analyzer = StockAnalyzer(self.alpaca)
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
self.auto_trade_log = []
def display_charts(self):
# Dynamically adjust columns based on number of stocks and available width
symbols = list(self.data.keys())
if not symbols:
st.warning("No stock data available to display charts.")
return # Exit the function if no symbols are available
symbol_to_name = self.analyzer.symbol_to_name
n = len(symbols)
# Calculate columns based on n for best fit
cols = 3
rows = (n + cols - 1) // cols
subplot_titles = [
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
]
fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
for idx, symbol in enumerate(symbols):
df = self.data[symbol]
if not df.empty:
row = idx // cols + 1
col = idx % cols + 1
fig.add_trace(
go.Scatter(
x=df.index,
y=df['Close'],
mode='lines',
name=symbol,
hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
),
row=row,
col=col
)
fig.update_layout(
title="Top Volume Stocks - Price Charts (Since 2023)",
height=max(400 * rows, 600),
showlegend=False,
dragmode=False,
)
# Enable scroll-zoom for each subplot (individual zoom)
fig.update_layout(
xaxis=dict(fixedrange=False),
yaxis=dict(fixedrange=False),
)
for i in range(1, rows * cols + 1):
fig.layout[f'xaxis{i}'].update(fixedrange=False)
fig.layout[f'yaxis{i}'].update(fixedrange=False)
st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})
def manual_trade(self):
# Move all user inputs to the sidebar
with st.sidebar:
st.header("Manual Trade")
symbol = st.text_input('Enter stock symbol')
# --- Unified Sentiment Check Feature ---
if "sentiment_result" not in st.session_state:
st.session_state["sentiment_result"] = None
if "article_headlines" not in st.session_state:
st.session_state["article_headlines"] = []
if "sentiment_source" not in st.session_state:
st.session_state["sentiment_source"] = None
if "sentiment_score" not in st.session_state:
st.session_state["sentiment_score"] = None
if st.button("Check Sentiment"):
if symbol:
sentiment_result, article_headlines, sentiment_source, sentiment_score = self.sentiment.get_sentiment_and_headlines(symbol)
st.session_state["sentiment_result"] = sentiment_result
st.session_state["article_headlines"] = article_headlines
st.session_state["sentiment_symbol"] = symbol
st.session_state["sentiment_source"] = sentiment_source
st.session_state["sentiment_score"] = sentiment_score
else:
st.session_state["sentiment_result"] = None
st.session_state["article_headlines"] = []
st.session_state["sentiment_symbol"] = ""
st.session_state["sentiment_source"] = None
st.session_state["sentiment_score"] = None
sentiment_result = st.session_state.get("sentiment_result")
article_headlines = st.session_state.get("article_headlines", [])
sentiment_symbol = st.session_state.get("sentiment_symbol", "")
sentiment_source = st.session_state.get("sentiment_source", "")
sentiment_score = st.session_state.get("sentiment_score", None)
if symbol and sentiment_symbol == symbol and sentiment_result is not None:
st.markdown(f"**Sentiment for {symbol.upper()} ({sentiment_source}):** {sentiment_result if sentiment_result in ['Positive', 'Negative', 'Neutral'] else 'No sentiment available'}")
if sentiment_score is not None:
st.markdown(f"<span style='font-size:0.8em;color:#888;'>Average sentiment score: <b>{sentiment_score:.3f}</b></span>", unsafe_allow_html=True)
elif symbol and sentiment_symbol == symbol and sentiment_result is None:
st.markdown("**Sentiment:** No sentiment available")
# Shrink headlines font, number them, and use white with underline for links for all sources
if symbol and sentiment_symbol == symbol and article_headlines:
st.markdown(
"<div style='font-size: 0.75em; margin-bottom: 0.5em;'><b>Recent Headlines:</b></div>",
unsafe_allow_html=True
)
headlines_with_links = []
try:
if sentiment_source == "NewsAPI":
articles = self.sentiment.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', page=1)
articles = articles.get('articles', [])[:5]
headlines_with_links = [
(a.get('title'), a.get('url')) for a in articles if a.get('title')
]
elif sentiment_source == "AlphaVantage":
import requests
url = (
f"https://www.alphavantage.co/query?function=NEWS_SENTIMENT&tickers={symbol}"
f"&apikey={self.sentiment.alpha_vantage_api_key}"
)
resp = requests.get(url)
data = resp.json()
feed = data.get("feed", [])[:5]
headlines_with_links = [
(item.get("title"), item.get("url")) for item in feed if item.get("title")
]
elif sentiment_source == "AlpacaNews":
news_items = self.sentiment.alpaca_api.get_news(symbol, limit=5)
headlines_with_links = [
(item.headline, getattr(item, "url", None)) for item in news_items if hasattr(item, "headline")
]
else:
headlines_with_links = [(headline, None) for headline in article_headlines]
except Exception as e:
logger.error(f"Error fetching URLs for headlines: {e}")
headlines_with_links = [(headline, None) for headline in article_headlines]
# Always use white for headline text/links
for idx, (headline, url) in enumerate(headlines_with_links, 1):
color = "#fff"
if url:
st.markdown(
f"<div style='font-size:0.75em; margin-bottom:0.15em; color:{color};'>"
f"<span style='font-weight:bold;'>{idx}.</span> "
f"<a href='{url}' target='_blank' style='color:{color}; text-decoration:underline;'>{headline}</a>"
f"</div>",
unsafe_allow_html=True
)
else:
st.markdown(
f"<div style='font-size:0.75em; margin-bottom:0.15em; color:{color};'>"
f"<span style='font-weight:bold;'>{idx}.</span> {headline}"
f"</div>",
unsafe_allow_html=True
)
elif symbol and sentiment_symbol == symbol and sentiment_result is not None and not article_headlines:
st.markdown("_No headlines available._")
# Fetch the current stock price dynamically using Alpaca's API
def get_stock_price(symbol):
try:
if not symbol:
return None
last_trade = self.alpaca.alpaca.get_latest_trade(symbol)
return last_trade.price
except Exception as e:
logger.error(f"Error fetching stock price for {symbol}: {e}")
return None
# Update stock price when a new symbol is entered
if symbol:
if "stock_price" not in st.session_state or st.session_state.get("last_symbol") != symbol:
st.session_state["stock_price"] = get_stock_price(symbol)
st.session_state["last_symbol"] = symbol
stock_price = st.session_state.get("stock_price")
# Explicitly display the stock price below the input field
if stock_price is not None:
st.write(f"Current stock price for {symbol.upper()}: ${stock_price:,.2f}")
else:
st.write("Enter a valid stock symbol to see the price.")
# Allow user to enter either quantity or amount
trade_option = st.radio("Trade Option", ["Enter Quantity", "Enter Amount"])
qty = st.number_input('Enter quantity', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Quantity" else None
amount = st.number_input('Enter amount ($)', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Amount" else None
# Dynamically calculate the other field
if stock_price:
if trade_option == "Enter Quantity" and qty:
amount = qty * stock_price
st.write(f"Calculated Amount: ${amount:,.2f}")
elif trade_option == "Enter Amount" and amount:
qty = float(amount / stock_price)
st.write(f"Calculated Quantity: {qty:,.2f}")
action = st.selectbox('Action', ['Buy', 'Sell'])
if st.button('Execute'):
if stock_price and qty:
is_market_open = self.alpaca.get_market_status()
if action == 'Buy':
order = self.alpaca.buy(symbol, qty, reason="Manual Trade")
else:
order = self.alpaca.sell(symbol, qty, reason="Manual Trade")
if order:
if not is_market_open:
_, _, next_open, _ = get_market_times(self.alpaca.alpaca)
next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown"
st.warning(f"Market is currently closed. The {action.lower()} order for {qty} shares of {symbol} has been submitted and will execute when the market opens at {next_open_time}.")
else:
st.success(f"Order executed: {action} {qty} shares of {symbol}")
else:
st.error("Order failed")
else:
st.error("Please enter a valid stock symbol and trade details.")
# Display portfolio information in the sidebar (restored)
st.header("Alpaca Cash Portfolio")
def refresh_portfolio():
account = self.alpaca.alpaca.get_account()
portfolio_data = {
"Metric": ["Cash Balance", "Buying Power", "Equity", "Portfolio Value"],
"Value": [
f"${int(float(account.cash)):,.0f}",
f"${int(float(account.buying_power)):,.0f}",
f"${int(float(account.equity)):,.0f}",
f"${int(float(account.portfolio_value)):,.0f}"
]
}
df = pd.DataFrame(portfolio_data)
st.table(df.to_dict(orient="records")) # Convert DataFrame to a list of dictionaries
refresh_portfolio()
st.button("Refresh Portfolio", on_click=refresh_portfolio)
def auto_trade_based_on_sentiment(self, sentiment):
actions = self._execute_sentiment_trades(sentiment)
self.auto_trade_log = actions
return actions
def _execute_sentiment_trades(self, sentiment):
actions = []
symbol_to_name = self.analyzer.symbol_to_name
for symbol, sentiment_info in sentiment.items():
# sentiment_info is now (sentiment, source)
if isinstance(sentiment_info, tuple):
sentiment_value, sentiment_source = sentiment_info
else:
sentiment_value, sentiment_source = sentiment_info, None
# If sentiment is missing or invalid, try to get it using fallback
if sentiment_value is None or sentiment_value not in ['Positive', 'Negative', 'Neutral']:
sentiment_value, _, sentiment_source = self.sentiment.get_sentiment_and_headlines(symbol)
action = None
is_market_open = self.alpaca.get_market_status()
logger.info(f"Auto-trade: {symbol} | Sentiment: {sentiment_value} | Source: {sentiment_source}")
if sentiment_value == 'Positive':
order = self.alpaca.buy(symbol, 1, reason=f"Sentiment: Positive ({sentiment_source})")
action = 'Buy'
elif sentiment_value == 'Negative':
order = self.alpaca.sell(symbol, 1, reason=f"Sentiment: Negative ({sentiment_source})")
action = 'Sell'
else:
order = None
action = 'Hold'
logger.info(f"Held {symbol}")
if order:
if not is_market_open:
_, _, next_open, _ = get_market_times(self.alpaca.alpaca)
next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown"
logger.warning(f"Market is currently closed. The {action.lower()} order for 1 share of {symbol} has been submitted and will execute when the market opens at {next_open_time}.")
else:
logger.info(f"Order executed: {action} 1 share of {symbol}")
actions.append({
'symbol': symbol,
'company_name': symbol_to_name.get(symbol, ''),
'sentiment': sentiment_value,
'sentiment_source': sentiment_source,
'action': action
})
return actions
def background_auto_trade(app):
"""This function runs in a background thread and updates session state with automatic trades."""
while True:
start_time = time.time()
# Use NewsAPI and Alpha Vantage for bulk sentiment (with fallback)
sentiment = app.sentiment.get_sentiment_bulk(app.analyzer.symbols)
actions = app._execute_sentiment_trades(sentiment)
log_entry = {
"timestamp": datetime.now().isoformat(),
"actions": actions,
"sentiment": sentiment
}
if AUTO_TRADE_LOG_KEY not in st.session_state:
st.session_state[AUTO_TRADE_LOG_KEY] = []
st.session_state[AUTO_TRADE_LOG_KEY].append(log_entry)
if len(st.session_state[AUTO_TRADE_LOG_KEY]) > 50:
st.session_state[AUTO_TRADE_LOG_KEY] = st.session_state[AUTO_TRADE_LOG_KEY][-50:]
logger.info(f"Auto-trade completed. Actions: {actions}")
elapsed_time = time.time() - start_time
sleep_time = max(0, AUTO_TRADE_INTERVAL - elapsed_time)
logger.info(f"Sleeping for {sleep_time:.2f} seconds before the next auto-trade.")
time.sleep(sleep_time)
def get_auto_trade_log():
"""Get the auto trade log from session state."""
if AUTO_TRADE_LOG_KEY not in st.session_state:
st.session_state[AUTO_TRADE_LOG_KEY] = []
return st.session_state[AUTO_TRADE_LOG_KEY]
def get_market_times(alpaca_api):
try:
clock = alpaca_api.get_clock()
is_open = clock.is_open
now = pd.Timestamp(clock.timestamp).tz_convert('America/New_York')
next_close = pd.Timestamp(clock.next_close).tz_convert('America/New_York')
next_open = pd.Timestamp(clock.next_open).tz_convert('America/New_York')
return is_open, now, next_open, next_close
except Exception as e:
logger.error(f"Error fetching market times: {e}")
return None, None, None, None
def main():
st.title("Ben's Stock Trading Application")
st.markdown("This is a fun stock trading application that uses a combination of key frameworks like Alpaca API, yfinance, News API, and Alpha Vantage for stock information and trading. Come and trade my money! Well, it's a paper account, so it's not real money. But still, have fun!")
if not st.secrets['ALPACA_API_KEY'] or not st.secrets['NEWS_API_KEY']:
st.error("Please configure your ALPACA_API_KEY and NEWS_API_KEY")
return
# Prevent Streamlit from rerunning the script on every widget interaction
# Use session state to persist objects and only update when necessary
if "app_instance" not in st.session_state:
st.session_state["app_instance"] = TradingApp()
app = st.session_state["app_instance"]
# Create two columns for market status and portfolio holdings
col1, col2 = st.columns([1, 1])
# Column 1: Portfolio holdings bar chart
with col1:
st.subheader("Portfolio Holdings")
holdings_container = st.empty() # Create a container for dynamic updates
def update_holdings():
holdings = app.alpaca.getHoldings()
if holdings:
df = pd.DataFrame(list(holdings.items()), columns=['Ticker', 'Market Value'])
fig = go.Figure(
data=[
go.Bar(
x=df['Ticker'],
y=df['Market Value'],
marker=dict(color=df['Market Value'], colorscale='Viridis'),
)
]
)
fig.update_layout(
xaxis_title="Ticker",
yaxis_title="$ USD",
height=400,
)
# Use a unique key by appending the current timestamp
holdings_container.plotly_chart(fig, use_container_width=True, key=f"portfolio_holdings_chart_{time.time()}")
else:
holdings_container.info("No holdings to display.")
# Periodically refresh the holdings plot
update_holdings()
st.button("Refresh Holdings", on_click=update_holdings)
# Add an expandable section for detailed holdings
st.subheader("Detailed Holdings")
with st.expander("View Detailed Holdings"):
holdings = app.alpaca.getHoldings() # Use self.alpaca instead of app.alpaca
if holdings:
# Get positions to access both market value and quantity
positions = app.alpaca.alpaca.list_positions()
positions_data = []
for position in positions:
positions_data.append({
"Ticker": position.symbol,
"Shares": float(position.qty),
"Amount (USD)": round(float(position.market_value))
})
detailed_holdings = pd.DataFrame(positions_data)
st.table(detailed_holdings)
else:
st.info("No holdings to display.")
# Column 2: Market status
with col2:
is_open, now, next_open, next_close = get_market_times(app.alpaca.alpaca)
market_status = "π’ Market is OPEN" if is_open else "π΄ Market is CLOSED"
st.markdown(f"### {market_status}")
if now is not None:
st.markdown(f"**Current time (ET):** {now.strftime('%Y-%m-%d %H:%M:%S')}")
if is_open and next_close is not None:
st.markdown(f"**Market closes at:** {next_close.strftime('%Y-%m-%d %H:%M:%S')} ET")
seconds_left = int((next_close - now).total_seconds())
st.markdown(f"**Time until close:** {pd.to_timedelta(seconds_left, unit='s')}")
elif not is_open and next_open is not None:
st.markdown(f"**Market opens at:** {next_open.strftime('%Y-%m-%d %H:%M:%S')} ET")
seconds_left = int((next_open - now).total_seconds())
st.markdown(f"**Time until open:** {pd.to_timedelta(seconds_left, unit='s')}")
# Initialize auto trade log in session state if needed
if AUTO_TRADE_LOG_KEY not in st.session_state:
st.session_state[AUTO_TRADE_LOG_KEY] = []
# Only start the background thread once
if "auto_trade_thread_started" not in st.session_state:
thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True)
thread.start()
st.session_state["auto_trade_thread_started"] = True
# Main area: plots and data
app.manual_trade()
app.display_charts()
# Read and display latest auto-trade actions
st.write("Automatic Trading Actions Based on Sentiment (background):")
auto_trade_log = get_auto_trade_log()
if auto_trade_log:
# Show the most recent entry
last_entry = auto_trade_log[-1]
st.write(f"Last checked: {last_entry['timestamp']}")
df = pd.DataFrame(last_entry["actions"])
if "company_name" in df.columns:
# Show sentiment source if available
display_cols = ["symbol", "company_name", "sentiment", "sentiment_source", "action"] if "sentiment_source" in df.columns else ["symbol", "company_name", "sentiment", "action"]
df = df[display_cols]
st.dataframe(df)
st.write("Sentiment Analysis (latest):")
st.write(last_entry["sentiment"])
# Plot buy/sell actions over time
st.write("Auto-Trading History (Buy/Sell Actions Over Time):")
history = []
for entry in auto_trade_log:
ts = entry["timestamp"]
for act in entry["actions"]:
if act["action"] in ("Buy", "Sell"):
history.append({
"timestamp": ts,
"symbol": act["symbol"],
"action": act["action"]
})
if history:
hist_df = pd.DataFrame(history)
if not hist_df.empty:
hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"])
hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1}).astype(float)
pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum")
st.line_chart(pivot.fillna(0))
else:
st.info("Waiting for first background auto-trade run...")
if __name__ == "__main__":
main() |