File size: 39,237 Bytes
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
 
 
 
 
 
f2789f8
 
3cb68d0
 
f2789f8
3cb68d0
f2789f8
 
 
 
 
 
 
 
 
 
 
3cb68d0
f2789f8
 
 
 
 
 
 
 
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2789f8
 
 
 
 
3cb68d0
3824258
 
 
 
 
 
 
 
f2789f8
 
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2789f8
 
 
 
 
 
 
 
3cb68d0
 
 
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15d1512
5ff4511
 
 
 
 
 
 
 
 
 
f2789f8
7b415bc
 
5ff4511
7919ea6
7b415bc
 
 
 
 
 
7919ea6
15d1512
7919ea6
7b415bc
 
 
 
b19b670
7b415bc
b19b670
7b415bc
5ff4511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b415bc
b19b670
7b415bc
5ff4511
 
 
 
 
 
 
 
 
 
 
 
 
 
b19b670
5ff4511
b19b670
7919ea6
7b415bc
7919ea6
7b415bc
7919ea6
7b415bc
 
 
7919ea6
7b415bc
7919ea6
7b415bc
7919ea6
 
7b415bc
 
 
 
15d1512
7b415bc
f2789f8
 
 
7b415bc
 
15d1512
 
 
 
 
 
5ff4511
15d1512
f2789f8
 
15d1512
5ff4511
15d1512
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c621d2
 
 
 
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15d1512
f2789f8
 
3824258
f2789f8
3e83ec5
 
 
 
f2789f8
 
dee760c
3cb68d0
dee760c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b415bc
446912b
 
 
 
15d1512
 
7919ea6
 
446912b
1c9aec6
 
7919ea6
446912b
 
 
15d1512
7919ea6
1c9aec6
446912b
 
 
15d1512
7919ea6
446912b
 
 
 
15d1512
7919ea6
1c9aec6
446912b
15d1512
7919ea6
 
446912b
1c9aec6
 
68b87e8
446912b
9fd65b3
7919ea6
9fd65b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
606890c
 
 
 
 
9fd65b3
 
 
 
 
 
68b87e8
7919ea6
68b87e8
9fd65b3
 
606890c
7919ea6
606890c
7919ea6
9fd65b3
 
 
 
606890c
7919ea6
 
9fd65b3
 
446912b
1c9aec6
 
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dee760c
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9873c68
 
 
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9873c68
3cb68d0
 
91fc69d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9873c68
9c621d2
 
 
 
 
9873c68
 
15d1512
 
 
 
 
 
7b415bc
91fc69d
15d1512
9873c68
9c621d2
15d1512
9873c68
15d1512
9873c68
 
15d1512
9873c68
 
 
 
3cb68d0
 
 
 
 
 
 
 
 
 
9873c68
 
 
 
15d1512
9873c68
 
 
 
 
9c621d2
9873c68
7b415bc
15d1512
7b415bc
18cfdec
 
 
 
 
 
 
 
 
 
 
 
9c621d2
7b415bc
9c621d2
 
3cb68d0
 
9c621d2
3cb68d0
 
 
3824258
18cfdec
 
 
 
 
 
 
 
 
 
 
dee760c
f2789f8
8889d78
7919ea6
f2789f8
 
9c621d2
f2789f8
 
3824258
 
 
 
 
f2789f8
3cb68d0
 
 
8889d78
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ae79c
448dc2f
86ae79c
448dc2f
86ae79c
0f500af
 
 
 
 
 
 
 
 
 
86ae79c
 
 
 
8889d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e77df83
 
 
3cb68d0
e77df83
 
 
 
 
f2789f8
 
3cb68d0
f2789f8
 
 
e77df83
 
 
 
 
 
 
 
15d1512
 
 
e77df83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cfdec
f2789f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
import streamlit as st
import yfinance as yf
import alpaca_trade_api as alpaca
from newsapi import NewsApiClient
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from datetime import datetime, timedelta
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import logging
import threading
import time
import json
import os
import plotly.graph_objs as go
from sklearn.preprocessing import minmax_scale
from plotly.subplots import make_subplots

# Configure logging with timestamps
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S"
)
logger = logging.getLogger(__name__)

# Use session state keys instead of file paths
AUTO_TRADE_LOG_KEY = "auto_trade_log"  # Session state key for trade log
AUTO_TRADE_INTERVAL = 10800  # Interval in seconds (e.g., 10800 seconds = 3 hours)
st.set_page_config(layout="wide")

class AlpacaTrader:
    def __init__(self, API_KEY, API_SECRET, BASE_URL):
        self.alpaca = alpaca.REST(API_KEY, API_SECRET, BASE_URL)
        self.cash = 0
        self.holdings = {}
        self.trades = []

    def get_market_status(self):
        return self.alpaca.get_clock().is_open

    def buy(self, symbol, qty, reason=None):
        try:
            # Ensure at least $1000 in cash before buying
            account = self.alpaca.get_account()
            cash_balance = float(account.cash)
            if cash_balance < 1000:
                logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.")
                return None
            order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day')
            if reason:
                logger.info(f"Bought {qty} shares of {symbol} [Reason: {reason}]")
            else:
                logger.info(f"Bought {qty} shares of {symbol}")
            
            # Record the trade
            if order:
                self.trades.append({
                    'symbol': symbol, 
                    'qty': qty, 
                    'action': 'Buy', 
                    'time': datetime.now(),
                    'reason': reason
                })
            
            return order
        except Exception as e:
            logger.error(f"Error buying {symbol}: {e}")
            return None

    def sell(self, symbol, qty, reason=None):
        # Check if position exists and has enough quantity before attempting to sell
        positions = {p.symbol: float(p.qty) for p in self.alpaca.list_positions()}
        if symbol not in positions:
            logger.warning(f"No position in {symbol}. Sell not attempted.")
            return None
        if positions[symbol] < qty:
            logger.warning(f"Not enough shares to sell: {qty} requested, {positions[symbol]} available for {symbol}. Sell not attempted.")
            return None
        try:
            order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day')
            if reason:
                logger.info(f"Sold {qty} shares of {symbol} [Reason: {reason}]")
            else:
                logger.info(f"Sold {qty} shares of {symbol}")
            
            # Record the trade
            if order:
                self.trades.append({
                    'symbol': symbol, 
                    'qty': qty, 
                    'action': 'Sell', 
                    'time': datetime.now(),
                    'reason': reason
                })
            
            return order
        except Exception as e:
            logger.error(f"Error selling {symbol}: {e}")
            return None

    def getHoldings(self):
        positions = self.alpaca.list_positions()
        for position in positions:
            self.holdings[position.symbol] = float(position.market_value)
        
        # Return holdings as a dictionary for internal use
        return self.holdings

    def getCash(self):
        return self.alpaca.get_account().cash

    def update_portfolio(self, symbol, price, qty, action):
        if action == 'buy':
            self.cash -= price * qty
            if symbol in self.holdings:
                self.holdings[symbol] += price * qty
            else:
                self.holdings[symbol] = price * qty
        elif action == 'sell':
            self.cash += price * qty
            self.holdings[symbol] -= price * qty
            if self.holdings[symbol] <= 0:
                del self.holdings[symbol]
        self.trades.append({'symbol': symbol, 'price': price, 'qty': qty, 'action': action, 'time': datetime.now()})

class NewsSentiment:
    def __init__(self, API_KEY):
        self.newsapi = NewsApiClient(api_key=API_KEY)
        self.sia = SentimentIntensityAnalyzer()
        self.alpha_vantage_api_key = st.secrets.get("ALPHA_VANTAGE_API_KEY")
        # Try to get Alpaca API for news fallback
        try:
            self.alpaca_api = alpaca.REST(
                st.secrets.get("ALPACA_API_KEY"),
                st.secrets.get("ALPACA_SECRET_KEY"),
                "https://paper-api.alpaca.markets"
            )
        except Exception as e:
            logger.error(f"Could not initialize Alpaca API for news fallback: {e}")
            self.alpaca_api = None

    def get_sentiment_and_headlines(self, symbol):
        """
        Try NewsAPI first, fallback to Alpha Vantage, then Alpaca news if needed.
        Returns (sentiment, headlines, source, avg_score).
        """
        # Try NewsAPI
        try:
            articles = self.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', page=1)
            headlines = [a['title'] for a in articles.get('articles', [])[:5]]
            if headlines:
                sentiment, avg_score = self._calculate_sentiment(headlines, return_score=True)
                logger.info(f"NewsAPI sentiment for {symbol}: {sentiment} | Headlines: {headlines}")
                return sentiment, headlines, "NewsAPI", avg_score
            else:
                logger.warning(f"NewsAPI returned no headlines for {symbol}.")
        except Exception as e:
            logger.error(f"NewsAPI error for {symbol}: {e}")
            logger.info(f"Falling back to Alpha Vantage for {symbol} sentiment and headlines.")

        # Fallback to Alpha Vantage
        try:
            if self.alpha_vantage_api_key:
                import requests
                url = (
                    f"https://www.alphavantage.co/query?function=NEWS_SENTIMENT&tickers={symbol}"
                    f"&apikey={self.alpha_vantage_api_key}"
                )
                resp = requests.get(url)
                data = resp.json()
                headlines = [item.get("title") for item in data.get("feed", [])[:5] if item.get("title")]
                if headlines:
                    sentiment, avg_score = self._calculate_sentiment(headlines, return_score=True)
                    logger.info(f"Alpha Vantage sentiment for {symbol}: {sentiment} | Headlines: {headlines}")
                    return sentiment, headlines, "AlphaVantage", avg_score
                else:
                    logger.warning(f"Alpha Vantage returned no headlines for {symbol}.")
        except Exception as e:
            logger.error(f"Alpha Vantage error for {symbol}: {e}")

        # Fallback to Alpaca News API
        try:
            if self.alpaca_api:
                news_items = self.alpaca_api.get_news(symbol, limit=5)
                headlines = [item.headline for item in news_items if hasattr(item, "headline")]
                if headlines:
                    sentiment, avg_score = self._calculate_sentiment(headlines, return_score=True)
                    logger.info(f"Alpaca News sentiment for {symbol}: {sentiment} | Headlines: {headlines}")
                    return sentiment, headlines, "AlpacaNews", avg_score
                else:
                    logger.warning(f"Alpaca News returned no headlines for {symbol}.")
        except Exception as e:
            logger.error(f"Alpaca News error for {symbol}: {e}")

        logger.info(
            f"No sentiment/headlines available for {symbol} from NewsAPI, Alpha Vantage, or Alpaca News."
        )
        return None, [], None, None

    def _calculate_sentiment(self, headlines, return_score=False):
        if not headlines:
            return (None, None) if return_score else None
        compound_score = sum(self.sia.polarity_scores(title)['compound'] for title in headlines)
        avg_score = compound_score / len(headlines)
        if avg_score > 0.1:
            sentiment = 'Positive'
        elif avg_score < -0.1:
            sentiment = 'Negative'
        else:
            sentiment = 'Neutral'
        return (sentiment, avg_score) if return_score else sentiment

    def get_sentiment_bulk(self, symbols):
        """
        Bulk sentiment for a list of symbols using NewsAPI only (for auto-trade).
        Returns dict: symbol -> (sentiment, source).
        """
        sentiment = {}
        for symbol in symbols:
            try:
                articles = self.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', page=1)
                headlines = [a['title'] for a in articles.get('articles', [])[:5]]
                if headlines:
                    s = self._calculate_sentiment(headlines)
                    logger.info(f"NewsAPI sentiment for {symbol}: {s} | Headlines: {headlines}")
                    sentiment[symbol] = (s, "NewsAPI")
                else:
                    # fallback to Alpha Vantage
                    s, _, src, _ = self.get_sentiment_and_headlines(symbol)
                    sentiment[symbol] = (s, src)
            except Exception as e:
                logger.error(f"Error getting news for {symbol}: {e}")
                # fallback to Alpha Vantage
                s, _, src, _ = self.get_sentiment_and_headlines(symbol)
                sentiment[symbol] = (s, src)
        return sentiment




class StockAnalyzer:
    def __init__(self, alpaca):
        self.alpaca = alpaca
        self.symbols = self.get_top_volume_stocks()
        # Build a symbol->name mapping for use in plots/tables
        self.symbol_to_name = self.get_symbol_to_name()

    def get_symbol_to_name(self):
        # Get mapping from symbol to company name using Alpaca asset info
        assets = self.alpaca.alpaca.list_assets(status='active')
        return {asset.symbol: asset.name for asset in assets}

    def get_bars(self, alp_api, symbols, timeframe='1D'):
        bars_data = {}
        try:
            bars = alp_api.get_bars(list(symbols), timeframe).df
            if 'symbol' not in bars.columns:
                logger.warning("The 'symbol' column is missing in the bars DataFrame.")
                return {symbol: {'bar_data': None} for symbol in symbols}

            for symbol in symbols:
                symbol_bars = bars[bars['symbol'] == symbol]
                if not symbol_bars.empty:
                    bar_info = symbol_bars.iloc[-1]
                    # Handle index type for timestamp
                    if isinstance(bar_info.name, tuple):
                        timestamp = bar_info.name[1].isoformat()
                    else:
                        timestamp = bar_info.name.isoformat()
                    bars_data[symbol] = {
                        'bar_data': {
                            'volume': bar_info['volume'],
                            'open': bar_info['open'],
                            'high': bar_info['high'],
                            'low': bar_info['low'],
                            'close': bar_info['close'],
                            'timestamp': timestamp
                        }
                    }
                else:
                    logger.debug(f"No bar data for symbol: {symbol}")
                    bars_data[symbol] = {'bar_data': None}
        except Exception as e:
            logger.warning(f"Error fetching bars in batch: {e}")
            for symbol in symbols:
                bars_data[symbol] = {'bar_data': None}
        return bars_data

    def assetswithconditions(self,stock_assets):
        cond = {
            'class': ['us_equity'],
            'exchange': ['NASDAQ', 'NYSE'],
            'status': ['active'],
            'tradable': [True],
            'marginable': [True],
            'shortable': [True],
            'easy_to_borrow': [True],
            'fractionable': [True]
        }
        assets_with_conditions = []
        asset_symbol_dict = {}
        
        for asset in stock_assets:
            # Skip symbols with '.' or '/' (preferred shares, warrants, etc.)
            if '.' in asset.symbol or '/' in asset.symbol:
                continue

            if (asset.__getattr__('class') in cond['class'] and 
                asset.exchange in cond['exchange'] and
                asset.status in cond['status'] and
                asset.tradable in cond['tradable'] and
                asset.marginable in cond['marginable'] and
                asset.shortable in cond['shortable'] and 
                asset.easy_to_borrow in cond['easy_to_borrow'] and
                asset.fractionable in cond['fractionable']
                ):
                assets_with_conditions.append(asset)
                
                asset_no_comma = asset.name.replace(',', '')
                asset_first_word = asset_no_comma.split()[0]

                asset_symbol_dict[asset.symbol] = asset._raw
                asset_symbol_dict[asset.symbol]['firstWord'] = asset_first_word
                
                sorted_dict = dict(sorted(asset_symbol_dict.items()))
        # print(f'Length of Alpaca assets with conditions = {len(assets_with_conditions)}')
        # print(f'assets_with_conditions = {assets_with_conditions}')
        return assets_with_conditions, sorted_dict


    def get_top_volume_stocks(self,num_stocks=10):
        try:
            # Get all tradable assets
            assets = self.alpaca.alpaca.list_assets(status='active')
            # tradable_assets = {asset.symbol: {} for asset in assets if asset.tradable}
            # print(f'tradable_assets = {tradable_assets}')

            assets_with_conditions, sorted_dict = self.assetswithconditions(assets)
            # print(f'sorted_dict = {sorted_dict}')
            # Fetch bar data for all tradable assets
            # print(f'sorted_dict.keys()={sorted_dict.keys()}')
            tradable_assets = self.get_bars(self.alpaca.alpaca, sorted_dict.keys(), timeframe='1D')

            # Extract volume and calculate the top 10 stocks by volume
            volume_data = {
                symbol: info['bar_data']['volume']
                for symbol, info in tradable_assets.items()
                if info['bar_data'] is not None
            }
            top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks]
            logger.info(f'top_volume_stocks = {top_volume_stocks}')

            return top_volume_stocks
        except Exception as e:
            logger.error(f"Error fetching top volume stocks: {e}")
            return []

    def get_historical_data(self, symbols):
        data = {}
        for symbol in symbols:
            try:
                # Pull historical data from 2000-01-01 to today, daily interval
                ticker = yf.Ticker(symbol)
                hist = ticker.history(start='2023-01-01', end=datetime.now().strftime('%Y-%m-%d'), interval='1d')
                data[symbol] = hist
            except Exception as e:
                logger.error(f"Error getting data for {symbol}: {e}")
        return data

class TradingApp:
    def __init__(self):
        self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
        self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
        self.analyzer = StockAnalyzer(self.alpaca)
        self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
        self.auto_trade_log = []

    def display_charts(self):
        # Dynamically adjust columns based on number of stocks and available width
        symbols = list(self.data.keys())
        if not symbols:
            st.warning("No stock data available to display charts.")
            return  # Exit the function if no symbols are available

        symbol_to_name = self.analyzer.symbol_to_name
        n = len(symbols)
        # Calculate columns based on n for best fit
        cols = 3
        rows = (n + cols - 1) // cols
        subplot_titles = [
            f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
        ]
        fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
        for idx, symbol in enumerate(symbols):
            df = self.data[symbol]
            if not df.empty:
                row = idx // cols + 1
                col = idx % cols + 1
                fig.add_trace(
                    go.Scatter(
                        x=df.index,
                        y=df['Close'],
                        mode='lines',
                        name=symbol,
                        hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
                    ),
                    row=row,
                    col=col
                )
        fig.update_layout(
            title="Top Volume Stocks - Price Charts (Since 2023)",
            height=max(400 * rows, 600),
            showlegend=False,
            dragmode=False,
        )
        # Enable scroll-zoom for each subplot (individual zoom)
        fig.update_layout(
            xaxis=dict(fixedrange=False),
            yaxis=dict(fixedrange=False),
        )
        for i in range(1, rows * cols + 1):
            fig.layout[f'xaxis{i}'].update(fixedrange=False)
            fig.layout[f'yaxis{i}'].update(fixedrange=False)
        st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})

    def manual_trade(self):
        # Move all user inputs to the sidebar
        with st.sidebar:
            st.header("Manual Trade")
            symbol = st.text_input('Enter stock symbol')

            # --- Unified Sentiment Check Feature ---
            if "sentiment_result" not in st.session_state:
                st.session_state["sentiment_result"] = None
            if "article_headlines" not in st.session_state:
                st.session_state["article_headlines"] = []
            if "sentiment_source" not in st.session_state:
                st.session_state["sentiment_source"] = None
            if "sentiment_score" not in st.session_state:
                st.session_state["sentiment_score"] = None

            if st.button("Check Sentiment"):
                if symbol:
                    sentiment_result, article_headlines, sentiment_source, sentiment_score = self.sentiment.get_sentiment_and_headlines(symbol)
                    st.session_state["sentiment_result"] = sentiment_result
                    st.session_state["article_headlines"] = article_headlines
                    st.session_state["sentiment_symbol"] = symbol
                    st.session_state["sentiment_source"] = sentiment_source
                    st.session_state["sentiment_score"] = sentiment_score
                else:
                    st.session_state["sentiment_result"] = None
                    st.session_state["article_headlines"] = []
                    st.session_state["sentiment_symbol"] = ""
                    st.session_state["sentiment_source"] = None
                    st.session_state["sentiment_score"] = None

            sentiment_result = st.session_state.get("sentiment_result")
            article_headlines = st.session_state.get("article_headlines", [])
            sentiment_symbol = st.session_state.get("sentiment_symbol", "")
            sentiment_source = st.session_state.get("sentiment_source", "")
            sentiment_score = st.session_state.get("sentiment_score", None)

            if symbol and sentiment_symbol == symbol and sentiment_result is not None:
                st.markdown(f"**Sentiment for {symbol.upper()} ({sentiment_source}):** {sentiment_result if sentiment_result in ['Positive', 'Negative', 'Neutral'] else 'No sentiment available'}")
                if sentiment_score is not None:
                    st.markdown(f"<span style='font-size:0.8em;color:#888;'>Average sentiment score: <b>{sentiment_score:.3f}</b></span>", unsafe_allow_html=True)
            elif symbol and sentiment_symbol == symbol and sentiment_result is None:
                st.markdown("**Sentiment:** No sentiment available")

            # Shrink headlines font, number them, and use white with underline for links for all sources
            if symbol and sentiment_symbol == symbol and article_headlines:
                st.markdown(
                    "<div style='font-size: 0.75em; margin-bottom: 0.5em;'><b>Recent Headlines:</b></div>",
                    unsafe_allow_html=True
                )
                headlines_with_links = []
                try:
                    if sentiment_source == "NewsAPI":
                        articles = self.sentiment.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', page=1)
                        articles = articles.get('articles', [])[:5]
                        headlines_with_links = [
                            (a.get('title'), a.get('url')) for a in articles if a.get('title')
                        ]
                    elif sentiment_source == "AlphaVantage":
                        import requests
                        url = (
                            f"https://www.alphavantage.co/query?function=NEWS_SENTIMENT&tickers={symbol}"
                            f"&apikey={self.sentiment.alpha_vantage_api_key}"
                        )
                        resp = requests.get(url)
                        data = resp.json()
                        feed = data.get("feed", [])[:5]
                        headlines_with_links = [
                            (item.get("title"), item.get("url")) for item in feed if item.get("title")
                        ]
                    elif sentiment_source == "AlpacaNews":
                        news_items = self.sentiment.alpaca_api.get_news(symbol, limit=5)
                        headlines_with_links = [
                            (item.headline, getattr(item, "url", None)) for item in news_items if hasattr(item, "headline")
                        ]
                    else:
                        headlines_with_links = [(headline, None) for headline in article_headlines]
                except Exception as e:
                    logger.error(f"Error fetching URLs for headlines: {e}")
                    headlines_with_links = [(headline, None) for headline in article_headlines]

                # Always use white for headline text/links
                for idx, (headline, url) in enumerate(headlines_with_links, 1):
                    color = "#fff"
                    if url:
                        st.markdown(
                            f"<div style='font-size:0.75em; margin-bottom:0.15em; color:{color};'>"
                            f"<span style='font-weight:bold;'>{idx}.</span> "
                            f"<a href='{url}' target='_blank' style='color:{color}; text-decoration:underline;'>{headline}</a>"
                            f"</div>",
                            unsafe_allow_html=True
                        )
                    else:
                        st.markdown(
                            f"<div style='font-size:0.75em; margin-bottom:0.15em; color:{color};'>"
                            f"<span style='font-weight:bold;'>{idx}.</span> {headline}"
                            f"</div>",
                            unsafe_allow_html=True
                        )
            elif symbol and sentiment_symbol == symbol and sentiment_result is not None and not article_headlines:
                st.markdown("_No headlines available._")

            # Fetch the current stock price dynamically using Alpaca's API
            def get_stock_price(symbol):
                try:
                    if not symbol:
                        return None
                    last_trade = self.alpaca.alpaca.get_latest_trade(symbol)
                    return last_trade.price
                except Exception as e:
                    logger.error(f"Error fetching stock price for {symbol}: {e}")
                    return None

            # Update stock price when a new symbol is entered
            if symbol:
                if "stock_price" not in st.session_state or st.session_state.get("last_symbol") != symbol:
                    st.session_state["stock_price"] = get_stock_price(symbol)
                    st.session_state["last_symbol"] = symbol

            stock_price = st.session_state.get("stock_price")
            # Explicitly display the stock price below the input field
            if stock_price is not None:
                st.write(f"Current stock price for {symbol.upper()}: ${stock_price:,.2f}")
            else:
                st.write("Enter a valid stock symbol to see the price.")

            # Allow user to enter either quantity or amount
            trade_option = st.radio("Trade Option", ["Enter Quantity", "Enter Amount"])
            qty = st.number_input('Enter quantity', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Quantity" else None
            amount = st.number_input('Enter amount ($)', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Amount" else None

            # Dynamically calculate the other field
            if stock_price:
                if trade_option == "Enter Quantity" and qty:
                    amount = qty * stock_price
                    st.write(f"Calculated Amount: ${amount:,.2f}")
                elif trade_option == "Enter Amount" and amount:
                    qty = float(amount / stock_price)
                    st.write(f"Calculated Quantity: {qty:,.2f}")

            action = st.selectbox('Action', ['Buy', 'Sell'])
            if st.button('Execute'):
                if stock_price and qty:
                    is_market_open = self.alpaca.get_market_status()
                    if action == 'Buy':
                        order = self.alpaca.buy(symbol, qty, reason="Manual Trade")
                    else:
                        order = self.alpaca.sell(symbol, qty, reason="Manual Trade")
                    
                    if order:
                        if not is_market_open:
                            _, _, next_open, _ = get_market_times(self.alpaca.alpaca)
                            next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown"
                            st.warning(f"Market is currently closed. The {action.lower()} order for {qty} shares of {symbol} has been submitted and will execute when the market opens at {next_open_time}.")
                        else:
                            st.success(f"Order executed: {action} {qty} shares of {symbol}")
                    else:
                        st.error("Order failed")
                else:
                    st.error("Please enter a valid stock symbol and trade details.")

            # Display portfolio information in the sidebar (restored)
            st.header("Alpaca Cash Portfolio")

            def refresh_portfolio():
                account = self.alpaca.alpaca.get_account()
                portfolio_data = {
                    "Metric": ["Cash Balance", "Buying Power", "Equity", "Portfolio Value"],
                    "Value": [
                        f"${int(float(account.cash)):,.0f}",
                        f"${int(float(account.buying_power)):,.0f}",
                        f"${int(float(account.equity)):,.0f}",
                        f"${int(float(account.portfolio_value)):,.0f}"
                    ]
                }
                df = pd.DataFrame(portfolio_data)
                st.table(df.to_dict(orient="records"))  # Convert DataFrame to a list of dictionaries

            refresh_portfolio()
            st.button("Refresh Portfolio", on_click=refresh_portfolio)

    def auto_trade_based_on_sentiment(self, sentiment):
        actions = self._execute_sentiment_trades(sentiment)
        self.auto_trade_log = actions
        return actions

    def _execute_sentiment_trades(self, sentiment):
        actions = []
        symbol_to_name = self.analyzer.symbol_to_name
        for symbol, sentiment_info in sentiment.items():
            # sentiment_info is now (sentiment, source)
            if isinstance(sentiment_info, tuple):
                sentiment_value, sentiment_source = sentiment_info
            else:
                sentiment_value, sentiment_source = sentiment_info, None
            # If sentiment is missing or invalid, try to get it using fallback
            if sentiment_value is None or sentiment_value not in ['Positive', 'Negative', 'Neutral']:
                sentiment_value, _, sentiment_source = self.sentiment.get_sentiment_and_headlines(symbol)
            action = None
            is_market_open = self.alpaca.get_market_status()
            logger.info(f"Auto-trade: {symbol} | Sentiment: {sentiment_value} | Source: {sentiment_source}")
            if sentiment_value == 'Positive':
                order = self.alpaca.buy(symbol, 1, reason=f"Sentiment: Positive ({sentiment_source})")
                action = 'Buy'
            elif sentiment_value == 'Negative':
                order = self.alpaca.sell(symbol, 1, reason=f"Sentiment: Negative ({sentiment_source})")
                action = 'Sell'
            else:
                order = None
                action = 'Hold'
                logger.info(f"Held {symbol}")

            if order:
                if not is_market_open:
                    _, _, next_open, _ = get_market_times(self.alpaca.alpaca)
                    next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown"
                    logger.warning(f"Market is currently closed. The {action.lower()} order for 1 share of {symbol} has been submitted and will execute when the market opens at {next_open_time}.")
                else:
                    logger.info(f"Order executed: {action} 1 share of {symbol}")

            actions.append({
                'symbol': symbol,
                'company_name': symbol_to_name.get(symbol, ''),
                'sentiment': sentiment_value,
                'sentiment_source': sentiment_source,
                'action': action
            })
        return actions

def background_auto_trade(app):
    """This function runs in a background thread and updates session state with automatic trades."""
    while True:
        start_time = time.time()
        # Use NewsAPI and Alpha Vantage for bulk sentiment (with fallback)
        sentiment = app.sentiment.get_sentiment_bulk(app.analyzer.symbols)
        actions = app._execute_sentiment_trades(sentiment)
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "actions": actions,
            "sentiment": sentiment
        }
        if AUTO_TRADE_LOG_KEY not in st.session_state:
            st.session_state[AUTO_TRADE_LOG_KEY] = []
        st.session_state[AUTO_TRADE_LOG_KEY].append(log_entry)
        if len(st.session_state[AUTO_TRADE_LOG_KEY]) > 50:
            st.session_state[AUTO_TRADE_LOG_KEY] = st.session_state[AUTO_TRADE_LOG_KEY][-50:]
        logger.info(f"Auto-trade completed. Actions: {actions}")
        elapsed_time = time.time() - start_time
        sleep_time = max(0, AUTO_TRADE_INTERVAL - elapsed_time)
        logger.info(f"Sleeping for {sleep_time:.2f} seconds before the next auto-trade.")
        time.sleep(sleep_time)

def get_auto_trade_log():
    """Get the auto trade log from session state."""
    if AUTO_TRADE_LOG_KEY not in st.session_state:
        st.session_state[AUTO_TRADE_LOG_KEY] = []
    return st.session_state[AUTO_TRADE_LOG_KEY]

def get_market_times(alpaca_api):
    try:
        clock = alpaca_api.get_clock()
        is_open = clock.is_open
        now = pd.Timestamp(clock.timestamp).tz_convert('America/New_York')
        next_close = pd.Timestamp(clock.next_close).tz_convert('America/New_York')
        next_open = pd.Timestamp(clock.next_open).tz_convert('America/New_York')
        return is_open, now, next_open, next_close
    except Exception as e:
        logger.error(f"Error fetching market times: {e}")
        return None, None, None, None

def main():
    st.title("Ben's Stock Trading Application")
    st.markdown("This is a fun stock trading application that uses a combination of key frameworks like Alpaca API, yfinance, News API, and Alpha Vantage for stock information and trading. Come and trade my money! Well, it's a paper account, so it's not real money. But still, have fun!")

    if not st.secrets['ALPACA_API_KEY'] or not st.secrets['NEWS_API_KEY']:
        st.error("Please configure your ALPACA_API_KEY and NEWS_API_KEY")
        return

    # Prevent Streamlit from rerunning the script on every widget interaction
    # Use session state to persist objects and only update when necessary
    if "app_instance" not in st.session_state:
        st.session_state["app_instance"] = TradingApp()
    app = st.session_state["app_instance"]

    # Create two columns for market status and portfolio holdings
    col1, col2 = st.columns([1, 1])

    # Column 1: Portfolio holdings bar chart
    with col1:
        st.subheader("Portfolio Holdings")
        holdings_container = st.empty()  # Create a container for dynamic updates
        def update_holdings():
            holdings = app.alpaca.getHoldings()
            if holdings:
                df = pd.DataFrame(list(holdings.items()), columns=['Ticker', 'Market Value'])
                fig = go.Figure(
                    data=[
                        go.Bar(
                            x=df['Ticker'],
                            y=df['Market Value'],
                            marker=dict(color=df['Market Value'], colorscale='Viridis'),
                        )
                    ]
                )
                fig.update_layout(
                    xaxis_title="Ticker",
                    yaxis_title="$ USD",
                    height=400,
                )
                # Use a unique key by appending the current timestamp
                holdings_container.plotly_chart(fig, use_container_width=True, key=f"portfolio_holdings_chart_{time.time()}")
            else:
                holdings_container.info("No holdings to display.")

        # Periodically refresh the holdings plot
        update_holdings()
        st.button("Refresh Holdings", on_click=update_holdings)

        # Add an expandable section for detailed holdings
        st.subheader("Detailed Holdings")
        with st.expander("View Detailed Holdings"):
            holdings = app.alpaca.getHoldings()  # Use self.alpaca instead of app.alpaca
            if holdings:
                # Get positions to access both market value and quantity
                positions = app.alpaca.alpaca.list_positions()
                positions_data = []
                for position in positions:
                    positions_data.append({
                        "Ticker": position.symbol,
                        "Shares": float(position.qty),
                        "Amount (USD)": round(float(position.market_value))
                    })
                detailed_holdings = pd.DataFrame(positions_data)
                st.table(detailed_holdings)
            else:
                st.info("No holdings to display.")

    # Column 2: Market status
    with col2:
        is_open, now, next_open, next_close = get_market_times(app.alpaca.alpaca)
        market_status = "🟒 Market is OPEN" if is_open else "πŸ”΄ Market is CLOSED"
        st.markdown(f"### {market_status}")
        if now is not None:
            st.markdown(f"**Current time (ET):** {now.strftime('%Y-%m-%d %H:%M:%S')}")
        if is_open and next_close is not None:
            st.markdown(f"**Market closes at:** {next_close.strftime('%Y-%m-%d %H:%M:%S')} ET")
            seconds_left = int((next_close - now).total_seconds())
            st.markdown(f"**Time until close:** {pd.to_timedelta(seconds_left, unit='s')}")
        elif not is_open and next_open is not None:
            st.markdown(f"**Market opens at:** {next_open.strftime('%Y-%m-%d %H:%M:%S')} ET")
            seconds_left = int((next_open - now).total_seconds())
            st.markdown(f"**Time until open:** {pd.to_timedelta(seconds_left, unit='s')}")


    # Initialize auto trade log in session state if needed
    if AUTO_TRADE_LOG_KEY not in st.session_state:
        st.session_state[AUTO_TRADE_LOG_KEY] = []

    # Only start the background thread once
    if "auto_trade_thread_started" not in st.session_state:
        thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True)
        thread.start()
        st.session_state["auto_trade_thread_started"] = True

    # Main area: plots and data
    app.manual_trade()
    app.display_charts()

    # Read and display latest auto-trade actions
    st.write("Automatic Trading Actions Based on Sentiment (background):")
    auto_trade_log = get_auto_trade_log()
    if auto_trade_log:
        # Show the most recent entry
        last_entry = auto_trade_log[-1]
        st.write(f"Last checked: {last_entry['timestamp']}")
        df = pd.DataFrame(last_entry["actions"])
        if "company_name" in df.columns:
            # Show sentiment source if available
            display_cols = ["symbol", "company_name", "sentiment", "sentiment_source", "action"] if "sentiment_source" in df.columns else ["symbol", "company_name", "sentiment", "action"]
            df = df[display_cols]
        st.dataframe(df)
        st.write("Sentiment Analysis (latest):")
        st.write(last_entry["sentiment"])

        # Plot buy/sell actions over time
        st.write("Auto-Trading History (Buy/Sell Actions Over Time):")
        history = []
        for entry in auto_trade_log:
            ts = entry["timestamp"]
            for act in entry["actions"]:
                if act["action"] in ("Buy", "Sell"):
                    history.append({
                        "timestamp": ts,
                        "symbol": act["symbol"],
                        "action": act["action"]
                    })
        if history:
            hist_df = pd.DataFrame(history)
            if not hist_df.empty:
                hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"])
                hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1}).astype(float)
                pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum")
                st.line_chart(pivot.fillna(0))
    else:
        st.info("Waiting for first background auto-trade run...")


if __name__ == "__main__":
    main()