Spaces:
Running
Running
Benjamin Consolvo
commited on
Commit
·
15d1512
1
Parent(s):
b19b670
sentiment logging
Browse files
app.py
CHANGED
@@ -128,12 +128,12 @@ class NewsSentiment:
|
|
128 |
def __init__(self, API_KEY):
|
129 |
self.newsapi = NewsApiClient(api_key=API_KEY)
|
130 |
self.sia = SentimentIntensityAnalyzer()
|
131 |
-
self.alpha_vantage_api_key = st.secrets.get("ALPHA_VANTAGE_API_KEY")
|
132 |
|
133 |
def get_sentiment_and_headlines(self, symbol):
|
134 |
"""
|
135 |
Try NewsAPI first, fallback to Alpha Vantage if needed.
|
136 |
-
Returns (sentiment, headlines).
|
137 |
"""
|
138 |
# Try NewsAPI
|
139 |
try:
|
@@ -141,7 +141,8 @@ class NewsSentiment:
|
|
141 |
headlines = [a['title'] for a in articles.get('articles', [])[:5]]
|
142 |
if headlines:
|
143 |
sentiment = self._calculate_sentiment(headlines)
|
144 |
-
|
|
|
145 |
else:
|
146 |
logger.warning(f"NewsAPI returned no headlines for {symbol}.")
|
147 |
except Exception as e:
|
@@ -152,7 +153,7 @@ class NewsSentiment:
|
|
152 |
try:
|
153 |
if not self.alpha_vantage_api_key:
|
154 |
logger.error("Alpha Vantage API key not found in Streamlit secrets.")
|
155 |
-
return None, []
|
156 |
import requests
|
157 |
url = (
|
158 |
f"https://www.alphavantage.co/query?function=NEWS_SENTIMENT&tickers={symbol}"
|
@@ -160,12 +161,11 @@ class NewsSentiment:
|
|
160 |
)
|
161 |
resp = requests.get(url)
|
162 |
data = resp.json()
|
163 |
-
# Alpha Vantage returns a list of news items under "feed"
|
164 |
headlines = [item.get("title") for item in data.get("feed", [])[:5] if item.get("title")]
|
165 |
if headlines:
|
166 |
-
logger.info(f"Using Alpha Vantage headlines for {symbol}: {headlines}")
|
167 |
sentiment = self._calculate_sentiment(headlines)
|
168 |
-
|
|
|
169 |
else:
|
170 |
logger.warning(f"Alpha Vantage returned no headlines for {symbol}.")
|
171 |
except Exception as e:
|
@@ -174,7 +174,7 @@ class NewsSentiment:
|
|
174 |
logger.info(
|
175 |
f"No sentiment/headlines available for {symbol} from either NewsAPI or Alpha Vantage."
|
176 |
)
|
177 |
-
return None, []
|
178 |
|
179 |
def _calculate_sentiment(self, headlines):
|
180 |
if not headlines:
|
@@ -191,17 +191,26 @@ class NewsSentiment:
|
|
191 |
def get_sentiment_bulk(self, symbols):
|
192 |
"""
|
193 |
Bulk sentiment for a list of symbols using NewsAPI only (for auto-trade).
|
194 |
-
Returns dict: symbol -> sentiment.
|
195 |
"""
|
196 |
sentiment = {}
|
197 |
for symbol in symbols:
|
198 |
try:
|
199 |
articles = self.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', page=1)
|
200 |
headlines = [a['title'] for a in articles.get('articles', [])[:5]]
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
except Exception as e:
|
203 |
logger.error(f"Error getting news for {symbol}: {e}")
|
204 |
-
|
|
|
|
|
205 |
return sentiment
|
206 |
|
207 |
|
@@ -342,7 +351,7 @@ class TradingApp:
|
|
342 |
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
|
343 |
self.analyzer = StockAnalyzer(self.alpaca)
|
344 |
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
|
345 |
-
self.auto_trade_log = []
|
346 |
|
347 |
def display_charts(self):
|
348 |
# Dynamically adjust columns based on number of stocks and available width
|
@@ -403,24 +412,29 @@ class TradingApp:
|
|
403 |
st.session_state["sentiment_result"] = None
|
404 |
if "article_headlines" not in st.session_state:
|
405 |
st.session_state["article_headlines"] = []
|
|
|
|
|
406 |
|
407 |
if st.button("Check Sentiment"):
|
408 |
if symbol:
|
409 |
-
sentiment_result, article_headlines = self.sentiment.get_sentiment_and_headlines(symbol)
|
410 |
st.session_state["sentiment_result"] = sentiment_result
|
411 |
st.session_state["article_headlines"] = article_headlines
|
412 |
st.session_state["sentiment_symbol"] = symbol
|
|
|
413 |
else:
|
414 |
st.session_state["sentiment_result"] = None
|
415 |
st.session_state["article_headlines"] = []
|
416 |
st.session_state["sentiment_symbol"] = ""
|
|
|
417 |
|
418 |
sentiment_result = st.session_state.get("sentiment_result")
|
419 |
article_headlines = st.session_state.get("article_headlines", [])
|
420 |
sentiment_symbol = st.session_state.get("sentiment_symbol", "")
|
|
|
421 |
|
422 |
if symbol and sentiment_symbol == symbol and sentiment_result is not None:
|
423 |
-
st.markdown(f"**Sentiment for {symbol.upper()}:** {sentiment_result if sentiment_result in ['Positive', 'Negative', 'Neutral'] else 'No sentiment available'}")
|
424 |
elif symbol and sentiment_symbol == symbol and sentiment_result is None:
|
425 |
st.markdown("**Sentiment:** No sentiment available")
|
426 |
|
@@ -518,17 +532,23 @@ class TradingApp:
|
|
518 |
def _execute_sentiment_trades(self, sentiment):
|
519 |
actions = []
|
520 |
symbol_to_name = self.analyzer.symbol_to_name
|
521 |
-
for symbol,
|
|
|
|
|
|
|
|
|
|
|
522 |
# If sentiment is missing or invalid, try to get it using fallback
|
523 |
if sentiment_value is None or sentiment_value not in ['Positive', 'Negative', 'Neutral']:
|
524 |
-
sentiment_value, _ = self.sentiment.get_sentiment_and_headlines(symbol)
|
525 |
action = None
|
526 |
is_market_open = self.alpaca.get_market_status()
|
|
|
527 |
if sentiment_value == 'Positive':
|
528 |
-
order = self.alpaca.buy(symbol, 1, reason="Sentiment: Positive")
|
529 |
action = 'Buy'
|
530 |
elif sentiment_value == 'Negative':
|
531 |
-
order = self.alpaca.sell(symbol, 1, reason="Sentiment: Negative")
|
532 |
action = 'Sell'
|
533 |
else:
|
534 |
order = None
|
@@ -547,6 +567,7 @@ class TradingApp:
|
|
547 |
'symbol': symbol,
|
548 |
'company_name': symbol_to_name.get(symbol, ''),
|
549 |
'sentiment': sentiment_value,
|
|
|
550 |
'action': action
|
551 |
})
|
552 |
return actions
|
@@ -555,7 +576,7 @@ def background_auto_trade(app):
|
|
555 |
"""This function runs in a background thread and updates session state with automatic trades."""
|
556 |
while True:
|
557 |
start_time = time.time()
|
558 |
-
# Use NewsAPI
|
559 |
sentiment = app.sentiment.get_sentiment_bulk(app.analyzer.symbols)
|
560 |
actions = app._execute_sentiment_trades(sentiment)
|
561 |
log_entry = {
|
@@ -699,7 +720,9 @@ def main():
|
|
699 |
st.write(f"Last checked: {last_entry['timestamp']}")
|
700 |
df = pd.DataFrame(last_entry["actions"])
|
701 |
if "company_name" in df.columns:
|
702 |
-
|
|
|
|
|
703 |
st.dataframe(df)
|
704 |
st.write("Sentiment Analysis (latest):")
|
705 |
st.write(last_entry["sentiment"])
|
|
|
128 |
def __init__(self, API_KEY):
|
129 |
self.newsapi = NewsApiClient(api_key=API_KEY)
|
130 |
self.sia = SentimentIntensityAnalyzer()
|
131 |
+
self.alpha_vantage_api_key = st.secrets.get("ALPHA_VANTAGE_API_KEY")
|
132 |
|
133 |
def get_sentiment_and_headlines(self, symbol):
|
134 |
"""
|
135 |
Try NewsAPI first, fallback to Alpha Vantage if needed.
|
136 |
+
Returns (sentiment, headlines, source).
|
137 |
"""
|
138 |
# Try NewsAPI
|
139 |
try:
|
|
|
141 |
headlines = [a['title'] for a in articles.get('articles', [])[:5]]
|
142 |
if headlines:
|
143 |
sentiment = self._calculate_sentiment(headlines)
|
144 |
+
logger.info(f"NewsAPI sentiment for {symbol}: {sentiment} | Headlines: {headlines}")
|
145 |
+
return sentiment, headlines, "NewsAPI"
|
146 |
else:
|
147 |
logger.warning(f"NewsAPI returned no headlines for {symbol}.")
|
148 |
except Exception as e:
|
|
|
153 |
try:
|
154 |
if not self.alpha_vantage_api_key:
|
155 |
logger.error("Alpha Vantage API key not found in Streamlit secrets.")
|
156 |
+
return None, [], "AlphaVantage"
|
157 |
import requests
|
158 |
url = (
|
159 |
f"https://www.alphavantage.co/query?function=NEWS_SENTIMENT&tickers={symbol}"
|
|
|
161 |
)
|
162 |
resp = requests.get(url)
|
163 |
data = resp.json()
|
|
|
164 |
headlines = [item.get("title") for item in data.get("feed", [])[:5] if item.get("title")]
|
165 |
if headlines:
|
|
|
166 |
sentiment = self._calculate_sentiment(headlines)
|
167 |
+
logger.info(f"Alpha Vantage sentiment for {symbol}: {sentiment} | Headlines: {headlines}")
|
168 |
+
return sentiment, headlines, "AlphaVantage"
|
169 |
else:
|
170 |
logger.warning(f"Alpha Vantage returned no headlines for {symbol}.")
|
171 |
except Exception as e:
|
|
|
174 |
logger.info(
|
175 |
f"No sentiment/headlines available for {symbol} from either NewsAPI or Alpha Vantage."
|
176 |
)
|
177 |
+
return None, [], None
|
178 |
|
179 |
def _calculate_sentiment(self, headlines):
|
180 |
if not headlines:
|
|
|
191 |
def get_sentiment_bulk(self, symbols):
|
192 |
"""
|
193 |
Bulk sentiment for a list of symbols using NewsAPI only (for auto-trade).
|
194 |
+
Returns dict: symbol -> (sentiment, source).
|
195 |
"""
|
196 |
sentiment = {}
|
197 |
for symbol in symbols:
|
198 |
try:
|
199 |
articles = self.newsapi.get_everything(q=symbol, language='en', sort_by='publishedAt', page=1)
|
200 |
headlines = [a['title'] for a in articles.get('articles', [])[:5]]
|
201 |
+
if headlines:
|
202 |
+
s = self._calculate_sentiment(headlines)
|
203 |
+
logger.info(f"NewsAPI sentiment for {symbol}: {s} | Headlines: {headlines}")
|
204 |
+
sentiment[symbol] = (s, "NewsAPI")
|
205 |
+
else:
|
206 |
+
# fallback to Alpha Vantage
|
207 |
+
s, _, src = self.get_sentiment_and_headlines(symbol)
|
208 |
+
sentiment[symbol] = (s, src)
|
209 |
except Exception as e:
|
210 |
logger.error(f"Error getting news for {symbol}: {e}")
|
211 |
+
# fallback to Alpha Vantage
|
212 |
+
s, _, src = self.get_sentiment_and_headlines(symbol)
|
213 |
+
sentiment[symbol] = (s, src)
|
214 |
return sentiment
|
215 |
|
216 |
|
|
|
351 |
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
|
352 |
self.analyzer = StockAnalyzer(self.alpaca)
|
353 |
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
|
354 |
+
self.auto_trade_log = []
|
355 |
|
356 |
def display_charts(self):
|
357 |
# Dynamically adjust columns based on number of stocks and available width
|
|
|
412 |
st.session_state["sentiment_result"] = None
|
413 |
if "article_headlines" not in st.session_state:
|
414 |
st.session_state["article_headlines"] = []
|
415 |
+
if "sentiment_source" not in st.session_state:
|
416 |
+
st.session_state["sentiment_source"] = None
|
417 |
|
418 |
if st.button("Check Sentiment"):
|
419 |
if symbol:
|
420 |
+
sentiment_result, article_headlines, sentiment_source = self.sentiment.get_sentiment_and_headlines(symbol)
|
421 |
st.session_state["sentiment_result"] = sentiment_result
|
422 |
st.session_state["article_headlines"] = article_headlines
|
423 |
st.session_state["sentiment_symbol"] = symbol
|
424 |
+
st.session_state["sentiment_source"] = sentiment_source
|
425 |
else:
|
426 |
st.session_state["sentiment_result"] = None
|
427 |
st.session_state["article_headlines"] = []
|
428 |
st.session_state["sentiment_symbol"] = ""
|
429 |
+
st.session_state["sentiment_source"] = None
|
430 |
|
431 |
sentiment_result = st.session_state.get("sentiment_result")
|
432 |
article_headlines = st.session_state.get("article_headlines", [])
|
433 |
sentiment_symbol = st.session_state.get("sentiment_symbol", "")
|
434 |
+
sentiment_source = st.session_state.get("sentiment_source", "")
|
435 |
|
436 |
if symbol and sentiment_symbol == symbol and sentiment_result is not None:
|
437 |
+
st.markdown(f"**Sentiment for {symbol.upper()} ({sentiment_source}):** {sentiment_result if sentiment_result in ['Positive', 'Negative', 'Neutral'] else 'No sentiment available'}")
|
438 |
elif symbol and sentiment_symbol == symbol and sentiment_result is None:
|
439 |
st.markdown("**Sentiment:** No sentiment available")
|
440 |
|
|
|
532 |
def _execute_sentiment_trades(self, sentiment):
|
533 |
actions = []
|
534 |
symbol_to_name = self.analyzer.symbol_to_name
|
535 |
+
for symbol, sentiment_info in sentiment.items():
|
536 |
+
# sentiment_info is now (sentiment, source)
|
537 |
+
if isinstance(sentiment_info, tuple):
|
538 |
+
sentiment_value, sentiment_source = sentiment_info
|
539 |
+
else:
|
540 |
+
sentiment_value, sentiment_source = sentiment_info, None
|
541 |
# If sentiment is missing or invalid, try to get it using fallback
|
542 |
if sentiment_value is None or sentiment_value not in ['Positive', 'Negative', 'Neutral']:
|
543 |
+
sentiment_value, _, sentiment_source = self.sentiment.get_sentiment_and_headlines(symbol)
|
544 |
action = None
|
545 |
is_market_open = self.alpaca.get_market_status()
|
546 |
+
logger.info(f"Auto-trade: {symbol} | Sentiment: {sentiment_value} | Source: {sentiment_source}")
|
547 |
if sentiment_value == 'Positive':
|
548 |
+
order = self.alpaca.buy(symbol, 1, reason=f"Sentiment: Positive ({sentiment_source})")
|
549 |
action = 'Buy'
|
550 |
elif sentiment_value == 'Negative':
|
551 |
+
order = self.alpaca.sell(symbol, 1, reason=f"Sentiment: Negative ({sentiment_source})")
|
552 |
action = 'Sell'
|
553 |
else:
|
554 |
order = None
|
|
|
567 |
'symbol': symbol,
|
568 |
'company_name': symbol_to_name.get(symbol, ''),
|
569 |
'sentiment': sentiment_value,
|
570 |
+
'sentiment_source': sentiment_source,
|
571 |
'action': action
|
572 |
})
|
573 |
return actions
|
|
|
576 |
"""This function runs in a background thread and updates session state with automatic trades."""
|
577 |
while True:
|
578 |
start_time = time.time()
|
579 |
+
# Use NewsAPI and Alpha Vantage for bulk sentiment (with fallback)
|
580 |
sentiment = app.sentiment.get_sentiment_bulk(app.analyzer.symbols)
|
581 |
actions = app._execute_sentiment_trades(sentiment)
|
582 |
log_entry = {
|
|
|
720 |
st.write(f"Last checked: {last_entry['timestamp']}")
|
721 |
df = pd.DataFrame(last_entry["actions"])
|
722 |
if "company_name" in df.columns:
|
723 |
+
# Show sentiment source if available
|
724 |
+
display_cols = ["symbol", "company_name", "sentiment", "sentiment_source", "action"] if "sentiment_source" in df.columns else ["symbol", "company_name", "sentiment", "action"]
|
725 |
+
df = df[display_cols]
|
726 |
st.dataframe(df)
|
727 |
st.write("Sentiment Analysis (latest):")
|
728 |
st.write(last_entry["sentiment"])
|