Spaces:
Running
Running
Benjamin Consolvo
commited on
Commit
·
3cb68d0
1
Parent(s):
3fba644
ui updates
Browse files
app.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
st.set_page_config(layout="wide")
|
3 |
import yfinance as yf
|
4 |
-
# import alpaca as tradeapi
|
5 |
import alpaca_trade_api as alpaca
|
6 |
from newsapi import NewsApiClient
|
7 |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
@@ -18,16 +16,18 @@ import plotly.graph_objs as go
|
|
18 |
from sklearn.preprocessing import minmax_scale
|
19 |
from plotly.subplots import make_subplots
|
20 |
|
21 |
-
# Configure logging
|
22 |
-
logging.basicConfig(
|
|
|
|
|
|
|
|
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
# The trading history events are saved in the file "auto_trade_log.json"
|
28 |
-
# This file is created and updated in the current working directory where you run your Streamlit app.
|
29 |
-
|
30 |
AUTO_TRADE_INTERVAL = 10800 # Interval in seconds (e.g., 10800 seconds = 3 hours)
|
|
|
31 |
|
32 |
class AlpacaTrader:
|
33 |
def __init__(self, API_KEY, API_SECRET, BASE_URL):
|
@@ -39,7 +39,7 @@ class AlpacaTrader:
|
|
39 |
def get_market_status(self):
|
40 |
return self.alpaca.get_clock().is_open
|
41 |
|
42 |
-
def buy(self, symbol, qty):
|
43 |
try:
|
44 |
# Ensure at least $1000 in cash before buying
|
45 |
account = self.alpaca.get_account()
|
@@ -48,13 +48,27 @@ class AlpacaTrader:
|
|
48 |
logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.")
|
49 |
return None
|
50 |
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day')
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
return order
|
53 |
except Exception as e:
|
54 |
logger.error(f"Error buying {symbol}: {e}")
|
55 |
return None
|
56 |
|
57 |
-
def sell(self, symbol, qty):
|
58 |
# Check if position exists and has enough quantity before attempting to sell
|
59 |
positions = {p.symbol: float(p.qty) for p in self.alpaca.list_positions()}
|
60 |
if symbol not in positions:
|
@@ -65,7 +79,21 @@ class AlpacaTrader:
|
|
65 |
return None
|
66 |
try:
|
67 |
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day')
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
return order
|
70 |
except Exception as e:
|
71 |
logger.error(f"Error selling {symbol}: {e}")
|
@@ -74,7 +102,9 @@ class AlpacaTrader:
|
|
74 |
def getHoldings(self):
|
75 |
positions = self.alpaca.list_positions()
|
76 |
for position in positions:
|
77 |
-
self.holdings[position.symbol] = position.market_value
|
|
|
|
|
78 |
return self.holdings
|
79 |
|
80 |
def getCash(self):
|
@@ -105,7 +135,9 @@ class NewsSentiment:
|
|
105 |
|
106 |
def get_news_sentiment(self, symbols):
|
107 |
'''
|
|
|
108 |
ERROR:__main__:Error getting news for APLD: {'status': 'error', 'code': 'rateLimited', 'message': 'You have made too many requests recently. Developer accounts are limited to 100 requests over a 24 hour period (50 requests available every 12 hours). Please upgrade to a paid plan if you need more requests.'}
|
|
|
109 |
'''
|
110 |
sentiment = {}
|
111 |
for symbol in symbols:
|
@@ -170,7 +202,8 @@ class StockAnalyzer:
|
|
170 |
}
|
171 |
}
|
172 |
else:
|
173 |
-
|
|
|
174 |
bars_data[symbol] = {'bar_data': None}
|
175 |
except Exception as e:
|
176 |
logger.warning(f"Error fetching bars in batch: {e}")
|
@@ -240,7 +273,7 @@ class StockAnalyzer:
|
|
240 |
if info['bar_data'] is not None
|
241 |
}
|
242 |
top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks]
|
243 |
-
|
244 |
|
245 |
return top_volume_stocks
|
246 |
except Exception as e:
|
@@ -272,19 +305,8 @@ class TradingApp:
|
|
272 |
symbols = list(self.data.keys())
|
273 |
symbol_to_name = self.analyzer.symbol_to_name
|
274 |
n = len(symbols)
|
275 |
-
|
276 |
# Calculate columns based on n for best fit
|
277 |
-
|
278 |
-
cols = n
|
279 |
-
elif n <= 6:
|
280 |
-
cols = 3
|
281 |
-
elif n <= 8:
|
282 |
-
cols = 4
|
283 |
-
elif n <= 12:
|
284 |
-
cols = 4
|
285 |
-
else:
|
286 |
-
cols = 5
|
287 |
-
|
288 |
rows = (n + cols - 1) // cols
|
289 |
subplot_titles = [
|
290 |
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
|
@@ -327,201 +349,112 @@ class TradingApp:
|
|
327 |
with st.sidebar:
|
328 |
st.header("Manual Trade")
|
329 |
symbol = st.text_input('Enter stock symbol')
|
330 |
-
qty = int(st.number_input('Enter quantity'))
|
331 |
-
action = st.selectbox('Action', ['Buy', 'Sell'])
|
332 |
-
if st.button('Execute'):
|
333 |
-
if action == 'Buy':
|
334 |
-
order = self.alpaca.buy(symbol, qty)
|
335 |
-
else:
|
336 |
-
order = self.alpaca.sell(symbol, qty)
|
337 |
-
if order:
|
338 |
-
st.success(f"Order executed: {action} {qty} shares of {symbol}")
|
339 |
-
else:
|
340 |
-
st.error("Order failed")
|
341 |
-
st.header("Portfolio")
|
342 |
-
st.write("Cash Balance:")
|
343 |
-
st.write(self.alpaca.getCash())
|
344 |
-
st.write("Holdings:")
|
345 |
-
st.write(self.alpaca.getHoldings())
|
346 |
-
st.write("Recent Trades:")
|
347 |
-
st.write(pd.DataFrame(self.alpaca.trades))
|
348 |
-
|
349 |
-
def auto_trade_based_on_sentiment(self, sentiment):
|
350 |
-
# Add company name to each action
|
351 |
-
actions = []
|
352 |
-
symbol_to_name = self.analyzer.symbol_to_name
|
353 |
-
for symbol, sentiment_value in sentiment.items():
|
354 |
-
action = None
|
355 |
-
if sentiment_value == 'Positive':
|
356 |
-
order = self.alpaca.buy(symbol, 1)
|
357 |
-
action = 'Buy'
|
358 |
-
elif sentiment_value == 'Negative':
|
359 |
-
order = self.alpaca.sell(symbol, 1)
|
360 |
-
action = 'Sell'
|
361 |
-
else:
|
362 |
-
order = None
|
363 |
-
action = 'Hold'
|
364 |
-
actions.append({
|
365 |
-
'symbol': symbol,
|
366 |
-
'company_name': symbol_to_name.get(symbol, ''),
|
367 |
-
'sentiment': sentiment_value,
|
368 |
-
'action': action
|
369 |
-
})
|
370 |
-
self.auto_trade_log = actions
|
371 |
-
return actions
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
'sentiment': sentiment_value,
|
395 |
-
'action': action
|
396 |
-
})
|
397 |
-
# Append to log file instead of overwriting
|
398 |
-
log_entry = {
|
399 |
-
"timestamp": datetime.now().isoformat(),
|
400 |
-
"actions": actions,
|
401 |
-
"sentiment": sentiment
|
402 |
-
}
|
403 |
-
try:
|
404 |
-
if os.path.exists(AUTO_TRADE_LOG_PATH):
|
405 |
-
with open(AUTO_TRADE_LOG_PATH, "r") as f:
|
406 |
-
log_data = json.load(f)
|
407 |
else:
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
class TradingApp:
|
424 |
-
def __init__(self):
|
425 |
-
self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
|
426 |
-
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
|
427 |
-
self.analyzer = StockAnalyzer(self.alpaca)
|
428 |
-
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
|
429 |
-
self.auto_trade_log = [] # Store automatic trade actions
|
430 |
-
|
431 |
-
def display_charts(self):
|
432 |
-
# Dynamically adjust columns based on number of stocks and available width
|
433 |
-
symbols = list(self.data.keys())
|
434 |
-
symbol_to_name = self.analyzer.symbol_to_name
|
435 |
-
n = len(symbols)
|
436 |
-
|
437 |
-
# Calculate columns based on n for best fit
|
438 |
-
if n <= 3:
|
439 |
-
cols = n
|
440 |
-
elif n <= 6:
|
441 |
-
cols = 3
|
442 |
-
elif n <= 8:
|
443 |
-
cols = 4
|
444 |
-
elif n <= 12:
|
445 |
-
cols = 4
|
446 |
-
else:
|
447 |
-
cols = 5
|
448 |
-
|
449 |
-
rows = (n + cols - 1) // cols
|
450 |
-
subplot_titles = [
|
451 |
-
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
|
452 |
-
]
|
453 |
-
fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
|
454 |
-
for idx, symbol in enumerate(symbols):
|
455 |
-
df = self.data[symbol]
|
456 |
-
if not df.empty:
|
457 |
-
row = idx // cols + 1
|
458 |
-
col = idx % cols + 1
|
459 |
-
fig.add_trace(
|
460 |
-
go.Scatter(
|
461 |
-
x=df.index,
|
462 |
-
y=df['Close'],
|
463 |
-
mode='lines',
|
464 |
-
name=symbol,
|
465 |
-
hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
|
466 |
-
),
|
467 |
-
row=row,
|
468 |
-
col=col
|
469 |
-
)
|
470 |
-
fig.update_layout(
|
471 |
-
title="Top Volume Stocks - Price Charts (Since 2023)",
|
472 |
-
height=max(400 * rows, 600),
|
473 |
-
showlegend=False,
|
474 |
-
dragmode=False,
|
475 |
-
)
|
476 |
-
# Enable scroll-zoom for each subplot (individual zoom)
|
477 |
-
fig.update_layout(
|
478 |
-
xaxis=dict(fixedrange=False),
|
479 |
-
yaxis=dict(fixedrange=False),
|
480 |
-
)
|
481 |
-
for i in range(1, rows * cols + 1):
|
482 |
-
fig.layout[f'xaxis{i}'].update(fixedrange=False)
|
483 |
-
fig.layout[f'yaxis{i}'].update(fixedrange=False)
|
484 |
-
st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})
|
485 |
|
486 |
-
def manual_trade(self):
|
487 |
-
# Move all user inputs to the sidebar
|
488 |
-
with st.sidebar:
|
489 |
-
st.header("Manual Trade")
|
490 |
-
symbol = st.text_input('Enter stock symbol')
|
491 |
-
qty = int(st.number_input('Enter quantity'))
|
492 |
action = st.selectbox('Action', ['Buy', 'Sell'])
|
493 |
if st.button('Execute'):
|
494 |
-
if
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
else:
|
501 |
-
st.error("
|
502 |
-
|
503 |
-
|
504 |
-
st.
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
|
510 |
def auto_trade_based_on_sentiment(self, sentiment):
|
511 |
-
# Add company name to each action
|
512 |
actions = []
|
513 |
symbol_to_name = self.analyzer.symbol_to_name
|
514 |
for symbol, sentiment_value in sentiment.items():
|
515 |
action = None
|
|
|
516 |
if sentiment_value == 'Positive':
|
517 |
-
order = self.alpaca.buy(symbol, 1)
|
518 |
action = 'Buy'
|
519 |
elif sentiment_value == 'Negative':
|
520 |
-
order = self.alpaca.sell(symbol, 1)
|
521 |
action = 'Sell'
|
522 |
else:
|
523 |
order = None
|
524 |
action = 'Hold'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
actions.append({
|
526 |
'symbol': symbol,
|
527 |
'company_name': symbol_to_name.get(symbol, ''),
|
@@ -532,216 +465,81 @@ class TradingApp:
|
|
532 |
return actions
|
533 |
|
534 |
def background_auto_trade(app):
|
535 |
-
# This function runs in a background thread and
|
536 |
-
# The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored.
|
537 |
-
# It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook).
|
538 |
-
# No code changes are needed for this warning.
|
539 |
while True:
|
540 |
sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
|
|
|
541 |
actions = []
|
542 |
for symbol, sentiment_value in sentiment.items():
|
543 |
action = None
|
|
|
544 |
if sentiment_value == 'Positive':
|
545 |
-
order = app.alpaca.buy(symbol, 1)
|
546 |
action = 'Buy'
|
547 |
elif sentiment_value == 'Negative':
|
548 |
-
order = app.alpaca.sell(symbol, 1)
|
549 |
action = 'Sell'
|
550 |
else:
|
551 |
order = None
|
552 |
action = 'Hold'
|
553 |
-
|
554 |
-
'symbol': symbol,
|
555 |
-
'sentiment': sentiment_value,
|
556 |
-
'action': action
|
557 |
-
})
|
558 |
-
# Append to log file instead of overwriting
|
559 |
-
log_entry = {
|
560 |
-
"timestamp": datetime.now().isoformat(),
|
561 |
-
"actions": actions,
|
562 |
-
"sentiment": sentiment
|
563 |
-
}
|
564 |
-
try:
|
565 |
-
if os.path.exists(AUTO_TRADE_LOG_PATH):
|
566 |
-
with open(AUTO_TRADE_LOG_PATH, "r") as f:
|
567 |
-
log_data = json.load(f)
|
568 |
-
else:
|
569 |
-
log_data = []
|
570 |
-
except Exception:
|
571 |
-
log_data = []
|
572 |
-
log_data.append(log_entry)
|
573 |
-
with open(AUTO_TRADE_LOG_PATH, "w") as f:
|
574 |
-
json.dump(log_data, f)
|
575 |
-
time.sleep(AUTO_TRADE_INTERVAL)
|
576 |
-
|
577 |
-
def load_auto_trade_log():
|
578 |
-
try:
|
579 |
-
with open(AUTO_TRADE_LOG_PATH, "r") as f:
|
580 |
-
return json.load(f)
|
581 |
-
except Exception:
|
582 |
-
return None
|
583 |
-
|
584 |
-
class TradingApp:
|
585 |
-
def __init__(self):
|
586 |
-
self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
|
587 |
-
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
|
588 |
-
self.analyzer = StockAnalyzer(self.alpaca)
|
589 |
-
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
|
590 |
-
self.auto_trade_log = [] # Store automatic trade actions
|
591 |
-
|
592 |
-
def display_charts(self):
|
593 |
-
# Dynamically adjust columns based on number of stocks and available width
|
594 |
-
symbols = list(self.data.keys())
|
595 |
-
symbol_to_name = self.analyzer.symbol_to_name
|
596 |
-
n = len(symbols)
|
597 |
-
|
598 |
-
# Calculate columns based on n for best fit
|
599 |
-
if n <= 3:
|
600 |
-
cols = n
|
601 |
-
elif n <= 6:
|
602 |
-
cols = 3
|
603 |
-
elif n <= 8:
|
604 |
-
cols = 4
|
605 |
-
elif n <= 12:
|
606 |
-
cols = 4
|
607 |
-
else:
|
608 |
-
cols = 5
|
609 |
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
for idx, symbol in enumerate(symbols):
|
616 |
-
df = self.data[symbol]
|
617 |
-
if not df.empty:
|
618 |
-
row = idx // cols + 1
|
619 |
-
col = idx % cols + 1
|
620 |
-
fig.add_trace(
|
621 |
-
go.Scatter(
|
622 |
-
x=df.index,
|
623 |
-
y=df['Close'],
|
624 |
-
mode='lines',
|
625 |
-
name=symbol,
|
626 |
-
hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
|
627 |
-
),
|
628 |
-
row=row,
|
629 |
-
col=col
|
630 |
-
)
|
631 |
-
fig.update_layout(
|
632 |
-
title="Top Volume Stocks - Price Charts (Since 2023)",
|
633 |
-
height=max(400 * rows, 600),
|
634 |
-
showlegend=False,
|
635 |
-
dragmode=False,
|
636 |
-
)
|
637 |
-
# Enable scroll-zoom for each subplot (individual zoom)
|
638 |
-
fig.update_layout(
|
639 |
-
xaxis=dict(fixedrange=False),
|
640 |
-
yaxis=dict(fixedrange=False),
|
641 |
-
)
|
642 |
-
for i in range(1, rows * cols + 1):
|
643 |
-
fig.layout[f'xaxis{i}'].update(fixedrange=False)
|
644 |
-
fig.layout[f'yaxis{i}'].update(fixedrange=False)
|
645 |
-
st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})
|
646 |
-
|
647 |
-
def manual_trade(self):
|
648 |
-
# Move all user inputs to the sidebar
|
649 |
-
with st.sidebar:
|
650 |
-
st.header("Manual Trade")
|
651 |
-
symbol = st.text_input('Enter stock symbol')
|
652 |
-
qty = int(st.number_input('Enter quantity'))
|
653 |
-
action = st.selectbox('Action', ['Buy', 'Sell'])
|
654 |
-
if st.button('Execute'):
|
655 |
-
if action == 'Buy':
|
656 |
-
order = self.alpaca.buy(symbol, qty)
|
657 |
else:
|
658 |
-
|
659 |
-
if order:
|
660 |
-
st.success(f"Order executed: {action} {qty} shares of {symbol}")
|
661 |
-
else:
|
662 |
-
st.error("Order failed")
|
663 |
-
st.header("Portfolio")
|
664 |
-
st.write("Cash Balance:")
|
665 |
-
st.write(self.alpaca.getCash())
|
666 |
-
st.write("Holdings:")
|
667 |
-
st.write(self.alpaca.getHoldings())
|
668 |
-
st.write("Recent Trades:")
|
669 |
-
st.write(pd.DataFrame(self.alpaca.trades))
|
670 |
|
671 |
-
def auto_trade_based_on_sentiment(self, sentiment):
|
672 |
-
# Add company name to each action
|
673 |
-
actions = []
|
674 |
-
symbol_to_name = self.analyzer.symbol_to_name
|
675 |
-
for symbol, sentiment_value in sentiment.items():
|
676 |
-
action = None
|
677 |
-
if sentiment_value == 'Positive':
|
678 |
-
order = self.alpaca.buy(symbol, 1)
|
679 |
-
action = 'Buy'
|
680 |
-
elif sentiment_value == 'Negative':
|
681 |
-
order = self.alpaca.sell(symbol, 1)
|
682 |
-
action = 'Sell'
|
683 |
-
else:
|
684 |
-
order = None
|
685 |
-
action = 'Hold'
|
686 |
actions.append({
|
687 |
'symbol': symbol,
|
688 |
'company_name': symbol_to_name.get(symbol, ''),
|
689 |
'sentiment': sentiment_value,
|
690 |
'action': action
|
691 |
})
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
def background_auto_trade(app):
|
696 |
-
# This function runs in a background thread and does not require a TTY.
|
697 |
-
# The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored.
|
698 |
-
# It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook).
|
699 |
-
# No code changes are needed for this warning.
|
700 |
-
while True:
|
701 |
-
sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
|
702 |
-
actions = []
|
703 |
-
for symbol, sentiment_value in sentiment.items():
|
704 |
-
action = None
|
705 |
-
if sentiment_value == 'Positive':
|
706 |
-
order = app.alpaca.buy(symbol, 1)
|
707 |
-
action = 'Buy'
|
708 |
-
elif sentiment_value == 'Negative':
|
709 |
-
order = app.alpaca.sell(symbol, 1)
|
710 |
-
action = 'Sell'
|
711 |
-
else:
|
712 |
-
order = None
|
713 |
-
action = 'Hold'
|
714 |
-
actions.append({
|
715 |
-
'symbol': symbol,
|
716 |
-
'sentiment': sentiment_value,
|
717 |
-
'action': action
|
718 |
-
})
|
719 |
-
# Append to log file instead of overwriting
|
720 |
log_entry = {
|
721 |
"timestamp": datetime.now().isoformat(),
|
722 |
"actions": actions,
|
723 |
"sentiment": sentiment
|
724 |
}
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
with open(AUTO_TRADE_LOG_PATH, "w") as f:
|
735 |
-
json.dump(log_data, f)
|
736 |
time.sleep(AUTO_TRADE_INTERVAL)
|
737 |
|
738 |
-
def
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
745 |
|
746 |
def get_market_times(alpaca_api):
|
747 |
try:
|
@@ -768,51 +566,85 @@ def main():
|
|
768 |
st.session_state["app_instance"] = TradingApp()
|
769 |
app = st.session_state["app_instance"]
|
770 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
771 |
# Only start the background thread once
|
772 |
if "auto_trade_thread_started" not in st.session_state:
|
773 |
thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True)
|
774 |
thread.start()
|
775 |
st.session_state["auto_trade_thread_started"] = True
|
776 |
|
777 |
-
# Static market clock (no auto-refresh)
|
778 |
-
is_open, now, next_open, next_close = get_market_times(app.alpaca.alpaca)
|
779 |
-
market_status = "🟢 Market is OPEN" if is_open else "🔴 Market is CLOSED"
|
780 |
-
st.markdown(f"### {market_status}")
|
781 |
-
if now is not None:
|
782 |
-
st.markdown(f"**Current time (ET):** {now.strftime('%Y-%m-%d %H:%M:%S')}")
|
783 |
-
if is_open and next_close is not None:
|
784 |
-
st.markdown(f"**Market closes at:** {next_close.strftime('%Y-%m-%d %H:%M:%S')} ET")
|
785 |
-
# Show countdown to close
|
786 |
-
seconds_left = int((next_close - now).total_seconds())
|
787 |
-
st.markdown(f"**Time until close:** {pd.to_timedelta(seconds_left, unit='s')}")
|
788 |
-
elif not is_open and next_open is not None:
|
789 |
-
st.markdown(f"**Market opens at:** {next_open.strftime('%Y-%m-%d %H:%M:%S')} ET")
|
790 |
-
# Show countdown to open
|
791 |
-
seconds_left = int((next_open - now).total_seconds())
|
792 |
-
st.markdown(f"**Time until open:** {pd.to_timedelta(seconds_left, unit='s')}")
|
793 |
-
|
794 |
-
# User inputs and portfolio are now in the sidebar
|
795 |
-
app.manual_trade()
|
796 |
-
|
797 |
# Main area: plots and data
|
|
|
798 |
app.display_charts()
|
799 |
|
800 |
# Read and display latest auto-trade actions
|
801 |
st.write("Automatic Trading Actions Based on Sentiment (background):")
|
802 |
-
auto_trade_log =
|
803 |
if auto_trade_log:
|
804 |
# Show the most recent entry
|
805 |
last_entry = auto_trade_log[-1]
|
806 |
st.write(f"Last checked: {last_entry['timestamp']}")
|
807 |
df = pd.DataFrame(last_entry["actions"])
|
808 |
-
# Reorder columns for clarity
|
809 |
if "company_name" in df.columns:
|
810 |
df = df[["symbol", "company_name", "sentiment", "action"]]
|
811 |
st.dataframe(df)
|
812 |
st.write("Sentiment Analysis (latest):")
|
813 |
st.write(last_entry["sentiment"])
|
814 |
|
815 |
-
# Plot buy/sell actions over time
|
816 |
st.write("Auto-Trading History (Buy/Sell Actions Over Time):")
|
817 |
history = []
|
818 |
for entry in auto_trade_log:
|
@@ -828,36 +660,12 @@ def main():
|
|
828 |
hist_df = pd.DataFrame(history)
|
829 |
if not hist_df.empty:
|
830 |
hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"])
|
831 |
-
|
832 |
-
# Avoid FutureWarning by explicitly converting to float after replace
|
833 |
-
hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1})
|
834 |
-
hist_df["action_value"] = hist_df["action_value"].astype(float)
|
835 |
pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum")
|
836 |
st.line_chart(pivot.fillna(0))
|
837 |
else:
|
838 |
st.info("Waiting for first background auto-trade run...")
|
839 |
|
840 |
-
# Explanation:
|
841 |
-
# In Alpaca:
|
842 |
-
# - 'cash' is the actual cash available in your account (uninvested funds).
|
843 |
-
# - 'buying_power' is the total amount you can use to buy securities, which may be higher than cash if you have margin enabled.
|
844 |
-
# For a cash account, buying_power == cash.
|
845 |
-
# For a margin account, buying_power can be up to 2x (or 4x for day trading) your cash, depending on regulations and your account status.
|
846 |
-
|
847 |
-
# Example usage:
|
848 |
-
# account = alpaca.get_account()
|
849 |
-
# cash_balance = account.cash
|
850 |
-
# buying_power = account.buying_power
|
851 |
-
|
852 |
-
# Note:
|
853 |
-
# To disable margin on your Alpaca paper account, you must set your account type to "cash" instead of "margin".
|
854 |
-
# This cannot be changed via the API or code. You must:
|
855 |
-
# 1. Log in to your Alpaca dashboard at https://app.alpaca.markets/
|
856 |
-
# 2. Go to "Paper Trading" > "Settings"
|
857 |
-
# 3. Set the account type to "Cash" (not "Margin")
|
858 |
-
# 4. If you do not see this option, you may need to reset your paper account or contact Alpaca support.
|
859 |
-
|
860 |
-
# There is no programmatic/API way to change the margin setting for a paper account.
|
861 |
|
862 |
if __name__ == "__main__":
|
863 |
main()
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import yfinance as yf
|
|
|
3 |
import alpaca_trade_api as alpaca
|
4 |
from newsapi import NewsApiClient
|
5 |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
|
|
16 |
from sklearn.preprocessing import minmax_scale
|
17 |
from plotly.subplots import make_subplots
|
18 |
|
19 |
+
# Configure logging with timestamps
|
20 |
+
logging.basicConfig(
|
21 |
+
level=logging.INFO,
|
22 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
23 |
+
datefmt="%Y-%m-%d %H:%M:%S"
|
24 |
+
)
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
+
# Use session state keys instead of file paths
|
28 |
+
AUTO_TRADE_LOG_KEY = "auto_trade_log" # Session state key for trade log
|
|
|
|
|
|
|
29 |
AUTO_TRADE_INTERVAL = 10800 # Interval in seconds (e.g., 10800 seconds = 3 hours)
|
30 |
+
st.set_page_config(layout="wide")
|
31 |
|
32 |
class AlpacaTrader:
|
33 |
def __init__(self, API_KEY, API_SECRET, BASE_URL):
|
|
|
39 |
def get_market_status(self):
|
40 |
return self.alpaca.get_clock().is_open
|
41 |
|
42 |
+
def buy(self, symbol, qty, reason=None):
|
43 |
try:
|
44 |
# Ensure at least $1000 in cash before buying
|
45 |
account = self.alpaca.get_account()
|
|
|
48 |
logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.")
|
49 |
return None
|
50 |
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day')
|
51 |
+
if reason:
|
52 |
+
logger.info(f"Bought {qty} shares of {symbol} [Reason: {reason}]")
|
53 |
+
else:
|
54 |
+
logger.info(f"Bought {qty} shares of {symbol}")
|
55 |
+
|
56 |
+
# Record the trade
|
57 |
+
if order:
|
58 |
+
self.trades.append({
|
59 |
+
'symbol': symbol,
|
60 |
+
'qty': qty,
|
61 |
+
'action': 'Buy',
|
62 |
+
'time': datetime.now(),
|
63 |
+
'reason': reason
|
64 |
+
})
|
65 |
+
|
66 |
return order
|
67 |
except Exception as e:
|
68 |
logger.error(f"Error buying {symbol}: {e}")
|
69 |
return None
|
70 |
|
71 |
+
def sell(self, symbol, qty, reason=None):
|
72 |
# Check if position exists and has enough quantity before attempting to sell
|
73 |
positions = {p.symbol: float(p.qty) for p in self.alpaca.list_positions()}
|
74 |
if symbol not in positions:
|
|
|
79 |
return None
|
80 |
try:
|
81 |
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day')
|
82 |
+
if reason:
|
83 |
+
logger.info(f"Sold {qty} shares of {symbol} [Reason: {reason}]")
|
84 |
+
else:
|
85 |
+
logger.info(f"Sold {qty} shares of {symbol}")
|
86 |
+
|
87 |
+
# Record the trade
|
88 |
+
if order:
|
89 |
+
self.trades.append({
|
90 |
+
'symbol': symbol,
|
91 |
+
'qty': qty,
|
92 |
+
'action': 'Sell',
|
93 |
+
'time': datetime.now(),
|
94 |
+
'reason': reason
|
95 |
+
})
|
96 |
+
|
97 |
return order
|
98 |
except Exception as e:
|
99 |
logger.error(f"Error selling {symbol}: {e}")
|
|
|
102 |
def getHoldings(self):
|
103 |
positions = self.alpaca.list_positions()
|
104 |
for position in positions:
|
105 |
+
self.holdings[position.symbol] = float(position.market_value)
|
106 |
+
|
107 |
+
# Return holdings as a dictionary for internal use
|
108 |
return self.holdings
|
109 |
|
110 |
def getCash(self):
|
|
|
135 |
|
136 |
def get_news_sentiment(self, symbols):
|
137 |
'''
|
138 |
+
The News API has a rate limit of 100 requests per day for free accounts. If you exceed this limit, you'll get a rateLimited error. Example error message:
|
139 |
ERROR:__main__:Error getting news for APLD: {'status': 'error', 'code': 'rateLimited', 'message': 'You have made too many requests recently. Developer accounts are limited to 100 requests over a 24 hour period (50 requests available every 12 hours). Please upgrade to a paid plan if you need more requests.'}
|
140 |
+
|
141 |
'''
|
142 |
sentiment = {}
|
143 |
for symbol in symbols:
|
|
|
202 |
}
|
203 |
}
|
204 |
else:
|
205 |
+
# Only log at debug level to avoid spamming warnings for missing bar data
|
206 |
+
logger.debug(f"No bar data for symbol: {symbol}")
|
207 |
bars_data[symbol] = {'bar_data': None}
|
208 |
except Exception as e:
|
209 |
logger.warning(f"Error fetching bars in batch: {e}")
|
|
|
273 |
if info['bar_data'] is not None
|
274 |
}
|
275 |
top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks]
|
276 |
+
logger.info(f'top_volume_stocks = {top_volume_stocks}')
|
277 |
|
278 |
return top_volume_stocks
|
279 |
except Exception as e:
|
|
|
305 |
symbols = list(self.data.keys())
|
306 |
symbol_to_name = self.analyzer.symbol_to_name
|
307 |
n = len(symbols)
|
|
|
308 |
# Calculate columns based on n for best fit
|
309 |
+
cols = 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
rows = (n + cols - 1) // cols
|
311 |
subplot_titles = [
|
312 |
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
|
|
|
349 |
with st.sidebar:
|
350 |
st.header("Manual Trade")
|
351 |
symbol = st.text_input('Enter stock symbol')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
+
# Fetch the current stock price dynamically using Alpaca's API
|
354 |
+
def get_stock_price(symbol):
|
355 |
+
try:
|
356 |
+
if not symbol:
|
357 |
+
return None
|
358 |
+
last_trade = self.alpaca.alpaca.get_latest_trade(symbol)
|
359 |
+
return last_trade.price
|
360 |
+
except Exception as e:
|
361 |
+
logger.error(f"Error fetching stock price for {symbol}: {e}")
|
362 |
+
return None
|
363 |
+
|
364 |
+
# Update stock price when a new symbol is entered
|
365 |
+
if symbol:
|
366 |
+
if "stock_price" not in st.session_state or st.session_state.get("last_symbol") != symbol:
|
367 |
+
st.session_state["stock_price"] = get_stock_price(symbol)
|
368 |
+
st.session_state["last_symbol"] = symbol
|
369 |
+
|
370 |
+
stock_price = st.session_state.get("stock_price")
|
371 |
+
# Explicitly display the stock price below the input field
|
372 |
+
if stock_price is not None:
|
373 |
+
st.write(f"Current stock price for {symbol.upper()}: ${stock_price:,.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
else:
|
375 |
+
st.write("Enter a valid stock symbol to see the price.")
|
376 |
+
|
377 |
+
# Allow user to enter either quantity or amount
|
378 |
+
trade_option = st.radio("Trade Option", ["Enter Quantity", "Enter Amount"])
|
379 |
+
qty = st.number_input('Enter quantity', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Quantity" else None
|
380 |
+
amount = st.number_input('Enter amount ($)', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Amount" else None
|
381 |
+
|
382 |
+
# Dynamically calculate the other field
|
383 |
+
if stock_price:
|
384 |
+
if trade_option == "Enter Quantity" and qty:
|
385 |
+
amount = qty * stock_price
|
386 |
+
st.write(f"Calculated Amount: ${amount:,.2f}")
|
387 |
+
elif trade_option == "Enter Amount" and amount:
|
388 |
+
qty = float(amount / stock_price)
|
389 |
+
st.write(f"Calculated Quantity: {qty:,.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
action = st.selectbox('Action', ['Buy', 'Sell'])
|
392 |
if st.button('Execute'):
|
393 |
+
if stock_price and qty:
|
394 |
+
is_market_open = self.alpaca.get_market_status()
|
395 |
+
if action == 'Buy':
|
396 |
+
order = self.alpaca.buy(symbol, qty, reason="Manual Trade")
|
397 |
+
else:
|
398 |
+
order = self.alpaca.sell(symbol, qty, reason="Manual Trade")
|
399 |
+
|
400 |
+
if order:
|
401 |
+
if not is_market_open:
|
402 |
+
_, _, next_open, _ = get_market_times(self.alpaca.alpaca)
|
403 |
+
next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown"
|
404 |
+
st.warning(f"Market is currently closed. The {action.lower()} order for {qty} shares of {symbol} has been submitted and will execute when the market opens at {next_open_time}.")
|
405 |
+
else:
|
406 |
+
st.success(f"Order executed: {action} {qty} shares of {symbol}")
|
407 |
+
else:
|
408 |
+
st.error("Order failed")
|
409 |
else:
|
410 |
+
st.error("Please enter a valid stock symbol and trade details.")
|
411 |
+
|
412 |
+
# Display portfolio information in the sidebar
|
413 |
+
st.header("Alpaca Cash Portfolio")
|
414 |
+
|
415 |
+
def refresh_portfolio():
|
416 |
+
account = self.alpaca.alpaca.get_account()
|
417 |
+
portfolio_data = {
|
418 |
+
"Metric": ["Cash Balance", "Buying Power", "Equity", "Portfolio Value"],
|
419 |
+
"Value": [
|
420 |
+
f"${int(float(account.cash)):,.0f}",
|
421 |
+
f"${int(float(account.buying_power)):,.0f}",
|
422 |
+
f"${int(float(account.equity)):,.0f}",
|
423 |
+
f"${int(float(account.portfolio_value)):,.0f}"
|
424 |
+
]
|
425 |
+
}
|
426 |
+
df = pd.DataFrame(portfolio_data)
|
427 |
+
st.table(df.to_dict(orient="records")) # Convert DataFrame to a list of dictionaries
|
428 |
+
|
429 |
+
refresh_portfolio()
|
430 |
+
st.button("Refresh Portfolio", on_click=refresh_portfolio)
|
431 |
+
# ...existing code...
|
432 |
|
433 |
def auto_trade_based_on_sentiment(self, sentiment):
|
|
|
434 |
actions = []
|
435 |
symbol_to_name = self.analyzer.symbol_to_name
|
436 |
for symbol, sentiment_value in sentiment.items():
|
437 |
action = None
|
438 |
+
is_market_open = self.alpaca.get_market_status()
|
439 |
if sentiment_value == 'Positive':
|
440 |
+
order = self.alpaca.buy(symbol, 1, reason="Sentiment: Positive")
|
441 |
action = 'Buy'
|
442 |
elif sentiment_value == 'Negative':
|
443 |
+
order = self.alpaca.sell(symbol, 1, reason="Sentiment: Negative")
|
444 |
action = 'Sell'
|
445 |
else:
|
446 |
order = None
|
447 |
action = 'Hold'
|
448 |
+
logger.info(f"Held {symbol}")
|
449 |
+
|
450 |
+
if order:
|
451 |
+
if not is_market_open:
|
452 |
+
_, _, next_open, _ = get_market_times(self.alpaca.alpaca)
|
453 |
+
next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown"
|
454 |
+
logger.warning(f"Market is currently closed. The {action.lower()} order for 1 share of {symbol} has been submitted and will execute when the market opens at {next_open_time}.")
|
455 |
+
else:
|
456 |
+
logger.info(f"Order executed: {action} 1 share of {symbol}")
|
457 |
+
|
458 |
actions.append({
|
459 |
'symbol': symbol,
|
460 |
'company_name': symbol_to_name.get(symbol, ''),
|
|
|
465 |
return actions
|
466 |
|
467 |
def background_auto_trade(app):
|
468 |
+
# This function runs in a background thread and updates session state
|
|
|
|
|
|
|
469 |
while True:
|
470 |
sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
|
471 |
+
symbol_to_name = app.analyzer.symbol_to_name
|
472 |
actions = []
|
473 |
for symbol, sentiment_value in sentiment.items():
|
474 |
action = None
|
475 |
+
is_market_open = app.alpaca.get_market_status()
|
476 |
if sentiment_value == 'Positive':
|
477 |
+
order = app.alpaca.buy(symbol, 1, reason="Sentiment: Positive")
|
478 |
action = 'Buy'
|
479 |
elif sentiment_value == 'Negative':
|
480 |
+
order = app.alpaca.sell(symbol, 1, reason="Sentiment: Negative")
|
481 |
action = 'Sell'
|
482 |
else:
|
483 |
order = None
|
484 |
action = 'Hold'
|
485 |
+
logger.info(f"Held {symbol}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
|
487 |
+
if order:
|
488 |
+
if not is_market_open:
|
489 |
+
_, _, next_open, _ = get_market_times(app.alpaca.alpaca)
|
490 |
+
next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown"
|
491 |
+
logger.warning(f"Market is currently closed. The {action.lower()} order for 1 share of {symbol} has been submitted and will execute when the market opens at {next_open_time}.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
492 |
else:
|
493 |
+
logger.info(f"Order executed: {action} 1 share of {symbol}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
actions.append({
|
496 |
'symbol': symbol,
|
497 |
'company_name': symbol_to_name.get(symbol, ''),
|
498 |
'sentiment': sentiment_value,
|
499 |
'action': action
|
500 |
})
|
501 |
+
|
502 |
+
# Create log entry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
log_entry = {
|
504 |
"timestamp": datetime.now().isoformat(),
|
505 |
"actions": actions,
|
506 |
"sentiment": sentiment
|
507 |
}
|
508 |
+
|
509 |
+
# Update session state - need to use a thread lock to safely update
|
510 |
+
if hasattr(threading, "main_thread") and threading.current_thread() is threading.main_thread():
|
511 |
+
# Direct update if in main thread
|
512 |
+
update_auto_trade_log(log_entry)
|
513 |
+
else:
|
514 |
+
# Safer to just store the latest entry, which the main thread will pick up
|
515 |
+
st.session_state["latest_auto_trade_entry"] = log_entry
|
516 |
+
|
|
|
|
|
517 |
time.sleep(AUTO_TRADE_INTERVAL)
|
518 |
|
519 |
+
def update_auto_trade_log(log_entry):
|
520 |
+
"""Update auto trade log in session state"""
|
521 |
+
if AUTO_TRADE_LOG_KEY not in st.session_state:
|
522 |
+
st.session_state[AUTO_TRADE_LOG_KEY] = []
|
523 |
+
|
524 |
+
# Append the new entry
|
525 |
+
st.session_state[AUTO_TRADE_LOG_KEY].append(log_entry)
|
526 |
+
|
527 |
+
# Limit size to avoid memory issues (keep last 50 entries)
|
528 |
+
if len(st.session_state[AUTO_TRADE_LOG_KEY]) > 50:
|
529 |
+
st.session_state[AUTO_TRADE_LOG_KEY] = st.session_state[AUTO_TRADE_LOG_KEY][-50:]
|
530 |
+
|
531 |
+
def get_auto_trade_log():
|
532 |
+
"""Get the auto trade log from session state"""
|
533 |
+
if AUTO_TRADE_LOG_KEY not in st.session_state:
|
534 |
+
st.session_state[AUTO_TRADE_LOG_KEY] = []
|
535 |
+
|
536 |
+
# Check if we have a new entry from background thread
|
537 |
+
if "latest_auto_trade_entry" in st.session_state:
|
538 |
+
update_auto_trade_log(st.session_state["latest_auto_trade_entry"])
|
539 |
+
# Clear the latest entry after adding it
|
540 |
+
del st.session_state["latest_auto_trade_entry"]
|
541 |
+
|
542 |
+
return st.session_state[AUTO_TRADE_LOG_KEY]
|
543 |
|
544 |
def get_market_times(alpaca_api):
|
545 |
try:
|
|
|
566 |
st.session_state["app_instance"] = TradingApp()
|
567 |
app = st.session_state["app_instance"]
|
568 |
|
569 |
+
# Create two columns for market status and portfolio holdings
|
570 |
+
col1, col2 = st.columns([1, 1])
|
571 |
+
|
572 |
+
# Column 1: Market status
|
573 |
+
with col1:
|
574 |
+
is_open, now, next_open, next_close = get_market_times(app.alpaca.alpaca)
|
575 |
+
market_status = "🟢 Market is OPEN" if is_open else "🔴 Market is CLOSED"
|
576 |
+
st.markdown(f"### {market_status}")
|
577 |
+
if now is not None:
|
578 |
+
st.markdown(f"**Current time (ET):** {now.strftime('%Y-%m-%d %H:%M:%S')}")
|
579 |
+
if is_open and next_close is not None:
|
580 |
+
st.markdown(f"**Market closes at:** {next_close.strftime('%Y-%m-%d %H:%M:%S')} ET")
|
581 |
+
seconds_left = int((next_close - now).total_seconds())
|
582 |
+
st.markdown(f"**Time until close:** {pd.to_timedelta(seconds_left, unit='s')}")
|
583 |
+
elif not is_open and next_open is not None:
|
584 |
+
st.markdown(f"**Market opens at:** {next_open.strftime('%Y-%m-%d %H:%M:%S')} ET")
|
585 |
+
seconds_left = int((next_open - now).total_seconds())
|
586 |
+
st.markdown(f"**Time until open:** {pd.to_timedelta(seconds_left, unit='s')}")
|
587 |
+
|
588 |
+
# Column 2: Portfolio holdings bar chart
|
589 |
+
with col2:
|
590 |
+
st.subheader("Portfolio Holdings")
|
591 |
+
holdings_container = st.empty() # Create a container for dynamic updates
|
592 |
+
def update_holdings():
|
593 |
+
holdings = app.alpaca.getHoldings()
|
594 |
+
if holdings:
|
595 |
+
df = pd.DataFrame(list(holdings.items()), columns=['Ticker', 'Market Value'])
|
596 |
+
fig = go.Figure(
|
597 |
+
data=[
|
598 |
+
go.Bar(
|
599 |
+
x=df['Ticker'],
|
600 |
+
y=df['Market Value'],
|
601 |
+
marker=dict(color=df['Market Value'], colorscale='Viridis'),
|
602 |
+
)
|
603 |
+
]
|
604 |
+
)
|
605 |
+
fig.update_layout(
|
606 |
+
xaxis_title="Ticker",
|
607 |
+
yaxis_title="$ USD",
|
608 |
+
height=400,
|
609 |
+
)
|
610 |
+
# Use a unique key by appending the current timestamp
|
611 |
+
holdings_container.plotly_chart(fig, use_container_width=True, key=f"portfolio_holdings_chart_{time.time()}")
|
612 |
+
else:
|
613 |
+
holdings_container.info("No holdings to display.")
|
614 |
+
|
615 |
+
# Periodically refresh the holdings plot
|
616 |
+
update_holdings()
|
617 |
+
st.button("Refresh Holdings", on_click=update_holdings)
|
618 |
+
|
619 |
+
# Initialize auto trade log in session state if needed
|
620 |
+
if AUTO_TRADE_LOG_KEY not in st.session_state:
|
621 |
+
st.session_state[AUTO_TRADE_LOG_KEY] = []
|
622 |
+
|
623 |
# Only start the background thread once
|
624 |
if "auto_trade_thread_started" not in st.session_state:
|
625 |
thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True)
|
626 |
thread.start()
|
627 |
st.session_state["auto_trade_thread_started"] = True
|
628 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
629 |
# Main area: plots and data
|
630 |
+
app.manual_trade()
|
631 |
app.display_charts()
|
632 |
|
633 |
# Read and display latest auto-trade actions
|
634 |
st.write("Automatic Trading Actions Based on Sentiment (background):")
|
635 |
+
auto_trade_log = get_auto_trade_log()
|
636 |
if auto_trade_log:
|
637 |
# Show the most recent entry
|
638 |
last_entry = auto_trade_log[-1]
|
639 |
st.write(f"Last checked: {last_entry['timestamp']}")
|
640 |
df = pd.DataFrame(last_entry["actions"])
|
|
|
641 |
if "company_name" in df.columns:
|
642 |
df = df[["symbol", "company_name", "sentiment", "action"]]
|
643 |
st.dataframe(df)
|
644 |
st.write("Sentiment Analysis (latest):")
|
645 |
st.write(last_entry["sentiment"])
|
646 |
|
647 |
+
# Plot buy/sell actions over time
|
648 |
st.write("Auto-Trading History (Buy/Sell Actions Over Time):")
|
649 |
history = []
|
650 |
for entry in auto_trade_log:
|
|
|
660 |
hist_df = pd.DataFrame(history)
|
661 |
if not hist_df.empty:
|
662 |
hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"])
|
663 |
+
hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1}).astype(float)
|
|
|
|
|
|
|
664 |
pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum")
|
665 |
st.line_chart(pivot.fillna(0))
|
666 |
else:
|
667 |
st.info("Waiting for first background auto-trade run...")
|
668 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
669 |
|
670 |
if __name__ == "__main__":
|
671 |
main()
|