Spaces:
Runtime error
Runtime error
File size: 1,390 Bytes
abe7c03 f525ef3 5cacb61 abe7c03 5cacb61 f525ef3 d82d943 f525ef3 abe7c03 f525ef3 abe7c03 120ccfd d82d943 f525ef3 abe7c03 f525ef3 abe7c03 d82d943 120ccfd abe7c03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from datasets import load_dataset
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
# Initialize the pipeline
nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
# Load a part of the WikiSQL dataset
wikisql_dataset = load_dataset("wikisql", split='train[:5]')
def generate_sql(query):
results = nl2sql_pipeline(query)
sql_query = results[0]['generated_text']
# Post-process the output to ensure it's a valid SQL query
sql_query = sql_query.replace('<pad>', '').replace('</s>', '').strip()
return sql_query
# Use examples from the WikiSQL dataset
example_questions = [(question['question'],) for question in wikisql_dataset]
# Create a Gradio interface
interface = gr.Interface(
fn=generate_sql,
inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
outputs="text",
examples=example_questions,
title="NL to SQL with Picard",
description="This model converts natural language queries into SQL using the WikiSQL dataset. Try one of the example questions or enter your own!"
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|