Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,35 @@
|
|
1 |
-
|
|
|
2 |
from datasets import load_dataset
|
3 |
|
4 |
-
# Load
|
5 |
-
|
6 |
-
|
7 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
inputs = tokenizer(examples["question"], padding="max_length", truncation=True, max_length=512)
|
15 |
-
outputs = tokenizer(examples["query"], padding="max_length", truncation=True, max_length=512)
|
16 |
-
return {"input_ids": inputs.input_ids, "attention_mask": inputs.attention_mask, "labels": outputs.input_ids}
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
output_dir="./results",
|
23 |
-
num_train_epochs=3,
|
24 |
-
per_device_train_batch_size=4,
|
25 |
-
per_device_eval_batch_size=4,
|
26 |
-
warmup_steps=500,
|
27 |
-
weight_decay=0.01,
|
28 |
-
logging_dir="./logs",
|
29 |
-
)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
results = trainer.evaluate()
|
42 |
-
print(results)
|
43 |
-
|
44 |
-
# Use the model for inference
|
45 |
-
def generate_sql(question):
|
46 |
-
inputs = tokenizer(question, return_tensors="pt", padding=True)
|
47 |
-
outputs = model.generate(**inputs, max_length=512)
|
48 |
-
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
-
return sql_query
|
50 |
-
|
51 |
-
sample_question = "What are the names of the students?"
|
52 |
-
print(generate_sql(sample_question))
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
+
# Load tokenizer and model
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
|
|
|
8 |
|
9 |
+
# Initialize the pipeline
|
10 |
+
nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
11 |
|
12 |
+
# Load a part of the Spider dataset
|
13 |
+
spider_dataset = load_dataset("spider", split='train[:5]')
|
|
|
|
|
|
|
14 |
|
15 |
+
def generate_sql(query):
|
16 |
+
results = nl2sql_pipeline(query)
|
17 |
+
sql_query = results[0]['generated_text']
|
18 |
+
return sql_query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Use examples from the Spider dataset
|
21 |
+
example_questions = [(question['question'],) for question in spider_dataset]
|
22 |
+
|
23 |
+
# Create a Gradio interface
|
24 |
+
interface = gr.Interface(
|
25 |
+
fn=generate_sql,
|
26 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
|
27 |
+
outputs="text",
|
28 |
+
examples=example_questions,
|
29 |
+
title="NL to SQL with Picard",
|
30 |
+
description="This model converts natural language queries into SQL using the Spider dataset. Try one of the example questions or enter your own!"
|
31 |
)
|
32 |
|
33 |
+
# Launch the app
|
34 |
+
if __name__ == "__main__":
|
35 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|