Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
3 |
|
4 |
# Load tokenizer and model
|
5 |
tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
|
6 |
model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def generate_sql(query):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
sql_query =
|
13 |
-
|
14 |
-
# Check if the output is the same as the input
|
15 |
-
if sql_query.strip().lower() == query.strip().lower():
|
16 |
-
return "The model did not generate a SQL query. Please try a different input or use a different model."
|
17 |
-
|
18 |
return sql_query
|
19 |
|
|
|
|
|
|
|
20 |
# Create a Gradio interface
|
21 |
interface = gr.Interface(
|
22 |
fn=generate_sql,
|
23 |
inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
|
24 |
outputs="text",
|
|
|
25 |
title="NL to SQL with Picard",
|
26 |
-
description="This model converts natural language queries into SQL.
|
27 |
)
|
28 |
|
29 |
# Launch the app
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
+
from datasets import load_dataset
|
4 |
|
5 |
# Load tokenizer and model
|
6 |
tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
|
7 |
model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
|
8 |
|
9 |
+
# Initialize the pipeline
|
10 |
+
nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
11 |
+
|
12 |
+
# Load a part of the Spider dataset
|
13 |
+
spider_dataset = load_dataset("spider", split='train[:5]')
|
14 |
+
|
15 |
def generate_sql(query):
|
16 |
+
results = nl2sql_pipeline(query)
|
17 |
+
sql_query = results[0]['generated_text']
|
18 |
+
# Post-process the output to ensure it's a valid SQL query
|
19 |
+
sql_query = sql_query.replace('<pad>', '').replace('</s>', '').strip()
|
|
|
|
|
|
|
|
|
|
|
20 |
return sql_query
|
21 |
|
22 |
+
# Use examples from the Spider dataset
|
23 |
+
example_questions = [(question['question'],) for question in spider_dataset]
|
24 |
+
|
25 |
# Create a Gradio interface
|
26 |
interface = gr.Interface(
|
27 |
fn=generate_sql,
|
28 |
inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
|
29 |
outputs="text",
|
30 |
+
examples=example_questions,
|
31 |
title="NL to SQL with Picard",
|
32 |
+
description="This model converts natural language queries into SQL using the Spider dataset. Try one of the example questions or enter your own!"
|
33 |
)
|
34 |
|
35 |
# Launch the app
|