Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding=utf-8 | |
import os | |
import sys | |
import json | |
import argparse | |
import logging | |
from datetime import datetime | |
import torch | |
from datasets import load_dataset | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TrainingArguments, | |
Trainer, | |
TrainerCallback, | |
set_seed, | |
BitsAndBytesConfig | |
) | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s - %(levelname)s - %(message)s", | |
handlers=[logging.StreamHandler(sys.stdout)] | |
) | |
logger = logging.getLogger(__name__) | |
# Check for BitsAndBytes | |
try: | |
from transformers import BitsAndBytesConfig | |
bitsandbytes_available = True | |
except ImportError: | |
bitsandbytes_available = False | |
logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.") | |
# Check for PEFT | |
try: | |
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training | |
peft_available = True | |
except ImportError: | |
peft_available = False | |
logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.") | |
def load_env_variables(): | |
"""Load environment variables from system, .env file, or Hugging Face Space variables.""" | |
# Check if we're running in a Hugging Face Space | |
if os.environ.get("SPACE_ID"): | |
logging.info("Running in Hugging Face Space") | |
# Log the presence of variables (without revealing values) | |
logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}") | |
logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}") | |
# If username is not set, try to extract from SPACE_ID | |
if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""): | |
username = os.environ.get("SPACE_ID").split("/")[0] | |
os.environ["HF_USERNAME"] = username | |
logging.info(f"Set HF_USERNAME from SPACE_ID: {username}") | |
else: | |
# Try to load from .env file if not in a Space | |
try: | |
from dotenv import load_dotenv | |
# Updated path to .env file in the new directory structure | |
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env") | |
if os.path.exists(env_path): | |
load_dotenv(env_path) | |
logging.info(f"Loaded environment variables from {env_path}") | |
logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}") | |
logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}") | |
logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}") | |
else: | |
logging.warning(f"No .env file found at {env_path}") | |
except ImportError: | |
logging.warning("python-dotenv not installed, not loading from .env file") | |
if not os.environ.get("HF_USERNAME"): | |
logger.warning("HF_USERNAME is not set. Using default username.") | |
if not os.environ.get("HF_SPACE_NAME"): | |
logger.warning("HF_SPACE_NAME is not set. Using default space name.") | |
# Set HF_TOKEN for huggingface_hub | |
if os.environ.get("HF_TOKEN"): | |
os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN") | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Fine-tune a language model on a text dataset") | |
parser.add_argument("--config", type=str, default="transformers_config.json", help="Path to the configuration file") | |
return parser.parse_args() | |
def main(): | |
# Set up logging | |
logger.info("Starting training process") | |
# Parse arguments | |
args = parse_args() | |
# Load environment variables | |
load_env_variables() | |
# Load configuration | |
try: | |
with open(args.config, "r") as f: | |
config = json.load(f) | |
logger.info(f"Loaded configuration from {args.config}") | |
except Exception as e: | |
logger.error(f"Error loading configuration: {e}") | |
return 1 | |
# Set random seed for reproducibility | |
seed = config.get("seed", 42) | |
set_seed(seed) | |
logger.info(f"Set random seed to {seed}") | |
# Check if we're running in a Hugging Face Space | |
if os.environ.get("SPACE_ID") and not os.environ.get("HF_USERNAME"): | |
# Extract username from SPACE_ID | |
username = os.environ.get("SPACE_ID").split("/")[0] | |
logger.info(f"Extracted username from SPACE_ID: {username}") | |
# Set hub_model_id if not already set and push_to_hub is enabled | |
if config.get("push_to_hub", False) and not config.get("hub_model_id"): | |
model_name = config.get("model_name", "").split("/")[-1] | |
config["hub_model_id"] = f"{username}/finetuned-{model_name}" | |
logger.info(f"Set hub_model_id to {config['hub_model_id']}") | |
# Load model and tokenizer | |
logger.info(f"Loading model: {config.get('model_name')}") | |
# Prepare BitsAndBytes config if 4-bit quantization is enabled | |
quantization_config = None | |
if config.get("load_in_4bit", False) and bitsandbytes_available: | |
logger.info("Using 4-bit quantization") | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type=config.get("bnb_4bit_quant_type", "nf4"), | |
bnb_4bit_compute_dtype=getattr(torch, config.get("bnb_4bit_compute_dtype", "float16")), | |
bnb_4bit_use_double_quant=config.get("bnb_4bit_use_double_quant", True) | |
) | |
# Load model with quantization config | |
try: | |
model = AutoModelForCausalLM.from_pretrained( | |
config.get("model_name"), | |
quantization_config=quantization_config, | |
device_map="auto", | |
trust_remote_code=config.get("trust_remote_code", False), | |
use_cache=False # For compatibility with gradient checkpointing | |
) | |
logger.info("Model loaded successfully") | |
# Enable gradient checkpointing if available | |
if hasattr(model, "gradient_checkpointing_enable"): | |
try: | |
# Try with use_reentrant parameter (newer versions) | |
model.gradient_checkpointing_enable(use_reentrant=False) | |
logger.info("Gradient checkpointing enabled with use_reentrant=False") | |
except TypeError: | |
# Fall back to version without parameter (older versions) | |
model.gradient_checkpointing_enable() | |
logger.info("Gradient checkpointing enabled without parameters") | |
except Exception as e: | |
logger.error(f"Error loading model: {e}") | |
return 1 | |
# Load tokenizer | |
try: | |
tokenizer = AutoTokenizer.from_pretrained( | |
config.get("model_name"), | |
use_fast=config.get("use_fast_tokenizer", True), | |
trust_remote_code=config.get("trust_remote_code", False) | |
) | |
logger.info("Tokenizer loaded successfully") | |
# Set chat template if specified | |
if config.get("chat_template"): | |
tokenizer.chat_template = config.get("chat_template") | |
logger.info(f"Set chat template to {config.get('chat_template')}") | |
# Ensure pad token is properly set | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
logger.info(f"Set pad_token_id to eos_token_id: {tokenizer.pad_token_id}") | |
except Exception as e: | |
logger.error(f"Error loading tokenizer: {e}") | |
return 1 | |
# Prepare model for k-bit training if using PEFT | |
if config.get("use_peft", False) and peft_available: | |
logger.info("Preparing model for parameter-efficient fine-tuning") | |
try: | |
model = prepare_model_for_kbit_training(model) | |
# Get target modules | |
target_modules = config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]) | |
# Create LoRA config | |
lora_config = LoraConfig( | |
r=config.get("lora_r", 16), | |
lora_alpha=config.get("lora_alpha", 32), | |
lora_dropout=config.get("lora_dropout", 0.05), | |
bias="none", | |
task_type="CAUSAL_LM", | |
target_modules=target_modules | |
) | |
# Apply LoRA to model | |
model = get_peft_model(model, lora_config) | |
logger.info(f"Applied LoRA with r={config.get('lora_r', 16)}, alpha={config.get('lora_alpha', 32)}") | |
except Exception as e: | |
logger.error(f"Error setting up PEFT: {e}") | |
return 1 | |
# Load dataset | |
logger.info(f"Loading dataset: {config.get('dataset_name')}") | |
try: | |
dataset = load_dataset(config.get("dataset_name")) | |
logger.info(f"Dataset loaded successfully with {len(dataset['train'])} training examples") | |
# Sort dataset by ID to ensure chunks from the same paper are processed together | |
logger.info("Sorting dataset by ID to maintain paper chunk order") | |
def sort_by_id(example): | |
# Extract ID as integer if possible, otherwise keep as string | |
try: | |
return int(example['id']) | |
except (ValueError, TypeError): | |
return example['id'] | |
# Apply sorting to the dataset | |
dataset['train'] = dataset['train'].sort('id') | |
logger.info("Dataset sorted by ID") | |
# Log the first few IDs to verify sorting | |
sample_ids = [example['id'] for example in dataset['train'].select(range(min(5, len(dataset['train']))))] | |
logger.info(f"First few IDs after sorting: {sample_ids}") | |
except Exception as e: | |
logger.error(f"Error loading or sorting dataset: {e}") | |
return 1 | |
# Simple data collator that processes each entry independently | |
# This ensures entries are not combined based on token size, even when batch size > 1 | |
class SimpleDataCollator: | |
def __init__(self, tokenizer): | |
self.tokenizer = tokenizer | |
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0} | |
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0 | |
self.prompt_counter = 0 # Global counter for all prompts | |
self.paper_counters = {} # Track prompts per paper ID | |
logger.info("SimpleDataCollator initialized - processing entries independently") | |
def __call__(self, features): | |
batch = {"input_ids": [], "attention_mask": [], "labels": []} | |
# Process each entry independently (no combining based on token size) | |
for example in features: | |
try: | |
# Get ID and conversation fields | |
paper_id = example.get("id", "") if isinstance(example, dict) else getattr(example, "id", "") | |
conversation = example.get("conversations", []) if isinstance(example, dict) else getattr(example, "conversations", []) | |
# Skip empty entries | |
if not conversation: | |
self.stats["skipped"] += 1 | |
continue | |
# Increment global prompt counter | |
self.prompt_counter += 1 | |
# Track prompts per paper | |
if paper_id not in self.paper_counters: | |
self.paper_counters[paper_id] = 0 | |
self.paper_counters[paper_id] += 1 | |
# Create a formatted prompt with tracking information | |
full_content = f"Prompt #{self.prompt_counter} | Paper ID: {paper_id} | Paper Chunk: {self.paper_counters[paper_id]}\n\n" | |
for message in conversation: | |
# Extract role and content | |
if isinstance(message, dict): | |
role = message.get("role", "") | |
content = message.get("content", "") | |
else: | |
role = getattr(message, "role", "") | |
content = getattr(message, "content", "") | |
# Add role and content to the full content | |
full_content += f"{role}: {content}\n\n" | |
# Tokenize the full content | |
input_ids = self.tokenizer.encode(full_content, add_special_tokens=True) | |
attention_mask = [1] * len(input_ids) | |
# Truncate if necessary | |
max_length = config.get("max_seq_length", 2048) | |
if len(input_ids) > max_length: | |
input_ids = input_ids[:max_length] | |
attention_mask = attention_mask[:max_length] | |
# Only add to batch if we have data | |
if len(input_ids) > 0: | |
# For content understanding, use the same tokens as labels | |
labels = input_ids.copy() | |
batch["input_ids"].append(input_ids) | |
batch["attention_mask"].append(attention_mask) | |
batch["labels"].append(labels) | |
self.stats["processed"] += 1 | |
self.stats["total_tokens"] += len(input_ids) | |
# Debug logging for the first few examples | |
if self.stats["processed"] <= 3: | |
logger.info(f"Example {self.stats['processed']} - Prompt #{self.prompt_counter} | Paper ID: {paper_id} | Paper Chunk: {self.paper_counters[paper_id]}") | |
logger.info(f"Token count: {len(input_ids)}") | |
if len(input_ids) < 50: # Catch potentially short sequences | |
logger.info(f"WARNING: Short token sequence: {len(input_ids)} tokens") | |
logger.info(f"Content preview: {full_content[:200]}...") | |
else: | |
self.stats["skipped"] += 1 | |
except Exception as e: | |
logger.warning(f"Error processing example: {str(e)[:100]}...") | |
self.stats["skipped"] += 1 | |
continue | |
# Pad the batch | |
if not batch["input_ids"]: | |
logger.warning("Empty batch, returning dummy tensors") | |
return { | |
"input_ids": torch.zeros((1, 1), dtype=torch.long), | |
"attention_mask": torch.zeros((1, 1), dtype=torch.long), | |
"labels": torch.zeros((1, 1), dtype=torch.long) | |
} | |
max_length = max(len(ids) for ids in batch["input_ids"]) | |
# Pad all sequences to max_length | |
for i in range(len(batch["input_ids"])): | |
padding_length = max_length - len(batch["input_ids"][i]) | |
if padding_length > 0: | |
batch["input_ids"][i].extend([self.pad_token_id] * padding_length) | |
batch["attention_mask"][i].extend([0] * padding_length) | |
batch["labels"][i].extend([-100] * padding_length) # Don't compute loss on padding | |
# Convert to tensors | |
batch = {k: torch.tensor(v) for k, v in batch.items()} | |
# Log stats periodically (every 100 batches) | |
if self.stats["processed"] % 100 == 0 and self.stats["processed"] > 0: | |
logger.info(f"Data collator stats: processed={self.stats['processed']}, " | |
f"skipped={self.stats['skipped']}, " | |
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}, " | |
f"unique_papers={len(self.paper_counters)}") | |
return batch | |
# Create data collator | |
data_collator = SimpleDataCollator(tokenizer) | |
# Simple logging callback | |
class LoggingCallback(TrainerCallback): | |
def __init__(self): | |
self.last_log_time = datetime.now() | |
self.training_start_time = datetime.now() | |
def on_step_end(self, args, state, control, **kwargs): | |
# Log every 50 steps or every 5 minutes, whichever comes first | |
current_time = datetime.now() | |
time_diff = (current_time - self.last_log_time).total_seconds() | |
elapsed_time = (current_time - self.training_start_time).total_seconds() / 60 # in minutes | |
if state.global_step % 50 == 0 or time_diff > 300: # 300 seconds = 5 minutes | |
loss = state.log_history[-1]['loss'] if state.log_history else 'N/A' | |
lr = state.log_history[-1]['learning_rate'] if state.log_history else 'N/A' | |
if isinstance(loss, float): | |
loss_str = f"{loss:.4f}" | |
else: | |
loss_str = str(loss) | |
if isinstance(lr, float): | |
lr_str = f"{lr:.8f}" | |
else: | |
lr_str = str(lr) | |
logger.info(f"Step: {state.global_step} | Loss: {loss_str} | LR: {lr_str} | Elapsed: {elapsed_time:.2f} min") | |
self.last_log_time = current_time | |
# Set up training arguments | |
logger.info("Setting up training arguments") | |
training_args = TrainingArguments( | |
output_dir=config.get("output_dir", "./results"), | |
num_train_epochs=config.get("num_train_epochs", 3), | |
per_device_train_batch_size=config.get("per_device_train_batch_size", 4), # Use config value, can be > 1 | |
gradient_accumulation_steps=config.get("gradient_accumulation_steps", 8), | |
learning_rate=config.get("learning_rate", 5e-5), | |
weight_decay=config.get("weight_decay", 0.01), | |
warmup_ratio=config.get("warmup_ratio", 0.1), | |
lr_scheduler_type=config.get("lr_scheduler_type", "linear"), | |
logging_steps=config.get("logging_steps", 10), | |
save_strategy=config.get("save_strategy", "steps"), # Updated to use steps by default | |
save_steps=config.get("save_steps", 100), # Save every 100 steps by default | |
save_total_limit=config.get("save_total_limit", 3), # Keep last 3 checkpoints | |
fp16=config.get("fp16", True), | |
bf16=config.get("bf16", False), | |
max_grad_norm=config.get("max_grad_norm", 1.0), | |
push_to_hub=config.get("push_to_hub", False), | |
hub_model_id=config.get("hub_model_id", None), | |
hub_token=os.environ.get("HF_TOKEN", None), | |
report_to="tensorboard", | |
remove_unused_columns=False, # Keep the conversations column | |
gradient_checkpointing=True, # Enable gradient checkpointing | |
dataloader_pin_memory=False, # Reduce memory usage | |
optim=config.get("optim", "adamw_torch"), | |
ddp_find_unused_parameters=False, # Improve distributed training efficiency | |
dataloader_drop_last=False, # Process all examples | |
dataloader_num_workers=0, # Sequential data loading | |
) | |
# Create a sequential sampler to ensure dataset is processed in order | |
logger.info("Creating sequential sampler to maintain dataset order") | |
# Create trainer with callback | |
logger.info("Creating trainer") | |
# Check if we should resume from checkpoint | |
resume_from_checkpoint = False | |
output_dir = config.get("output_dir", "./results") | |
if os.path.exists(output_dir): | |
checkpoints = [folder for folder in os.listdir(output_dir) if folder.startswith("checkpoint-")] | |
if checkpoints: | |
latest_checkpoint = max(checkpoints, key=lambda x: int(x.split("-")[1])) | |
resume_from_checkpoint = os.path.join(output_dir, latest_checkpoint) | |
logger.info(f"Found checkpoint: {resume_from_checkpoint}. Training will resume from this point.") | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset["train"], | |
data_collator=data_collator, | |
callbacks=[LoggingCallback()] | |
) | |
# Override the default data loader to disable shuffling | |
# This is necessary because TrainingArguments doesn't have a direct shuffle parameter | |
def get_train_dataloader_no_shuffle(): | |
"""Create a train DataLoader with shuffling disabled.""" | |
logger.info("Creating train dataloader with sequential sampler (no shuffling)") | |
# Create a sequential sampler to ensure dataset is processed in order | |
train_sampler = torch.utils.data.SequentialSampler(dataset["train"]) | |
return torch.utils.data.DataLoader( | |
dataset["train"], | |
batch_size=training_args.per_device_train_batch_size, | |
sampler=train_sampler, # Use sequential sampler instead of shuffle parameter | |
collate_fn=data_collator, | |
drop_last=False, | |
num_workers=0, | |
pin_memory=False | |
) | |
# Replace the default data loader with our non-shuffling version | |
trainer.get_train_dataloader = get_train_dataloader_no_shuffle | |
# Start training | |
logger.info("Starting training") | |
logger.info(f"Processing with batch size = {training_args.per_device_train_batch_size}, each entry processed independently") | |
# Create a lock file to indicate training is in progress | |
lock_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "TRAINING_IN_PROGRESS.lock") | |
with open(lock_file, "w") as f: | |
f.write(f"Training started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n") | |
f.write(f"Expected completion: After {training_args.num_train_epochs} epochs\n") | |
f.write("DO NOT UPDATE OR RESTART THIS SPACE UNTIL TRAINING COMPLETES\n") | |
logger.info(f"Created lock file: {lock_file}") | |
try: | |
trainer.train(resume_from_checkpoint=resume_from_checkpoint) | |
logger.info("Training completed successfully") | |
# Save model | |
if config.get("push_to_hub", False): | |
logger.info(f"Pushing model to hub: {config.get('hub_model_id')}") | |
trainer.push_to_hub() | |
logger.info("Model pushed to hub successfully") | |
else: | |
logger.info(f"Saving model to {config.get('output_dir', './results')}") | |
trainer.save_model() | |
logger.info("Model saved successfully") | |
except Exception as e: | |
logger.error(f"Training failed with error: {str(e)}") | |
raise | |
finally: | |
# Remove the lock file when training completes or fails | |
if os.path.exists(lock_file): | |
os.remove(lock_file) | |
logger.info(f"Removed lock file: {lock_file}") | |
return 0 | |
if __name__ == "__main__": | |
sys.exit(main()) | |