Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .gitignore +3 -0
- README.md +162 -12
- dataset_config.json +8 -0
- results/Phase1_UNSUPERVISED_train_learning_rate.svg +1 -0
- results/Phase1_UNSUPERVISED_train_loss.svg +1 -0
- results/events.out.tfevents.1741231217.r-george-api-deepspace-cn5ooqem-02d88-f8uu9.152.0 +3 -0
- rollback_space.py +106 -0
- run_transformers_training.py +506 -0
- transformers_config.json +47 -0
- update_space.py +186 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
*.pyc
|
3 |
+
__pycache__
|
README.md
CHANGED
@@ -1,12 +1,162 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: R1-Distill-LLama-8b Training
|
3 |
+
emoji: 🧠
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: "5.17.0"
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
# DeepSeek R1-Distill-LLama-8b Training
|
14 |
+
|
15 |
+
This space is dedicated to training the DeepSeek R1-Distill-LLama-8b model for cognitive science research. The training process utilizes advanced optimizations and efficient data processing techniques.
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
- Optimized training pipeline
|
20 |
+
- Cognitive dataset integration
|
21 |
+
- Advanced memory management
|
22 |
+
- Gradient checkpointing
|
23 |
+
- Sequential data processing
|
24 |
+
|
25 |
+
## Configuration Files
|
26 |
+
|
27 |
+
- `transformers_config.json`: Model and training parameters
|
28 |
+
- `hardware_config.json`: Hardware-specific optimizations
|
29 |
+
- `dataset_config.json`: Dataset processing settings
|
30 |
+
- `requirements.txt`: Required dependencies
|
31 |
+
|
32 |
+
## Training Process
|
33 |
+
|
34 |
+
The training utilizes:
|
35 |
+
- Custom data processing pipeline
|
36 |
+
- Paper-order preservation
|
37 |
+
- Efficient memory usage
|
38 |
+
- Gradient accumulation
|
39 |
+
|
40 |
+
## Dataset
|
41 |
+
|
42 |
+
Training uses the cognitive dataset with:
|
43 |
+
- Maintained paper order
|
44 |
+
- Proper metadata handling
|
45 |
+
- Optimized sequence length
|
46 |
+
- Efficient batching
|
47 |
+
|
48 |
+
## Hardware Requirements
|
49 |
+
|
50 |
+
- GPU: L4 or better
|
51 |
+
- VRAM: 24GB minimum
|
52 |
+
- RAM: 32GB recommended
|
53 |
+
|
54 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
55 |
+
|
56 |
+
# Phase 1: Domain Adaptation (Unsupervised)
|
57 |
+
|
58 |
+
This directory contains the code and configuration for domain adaptation of the DeepSeek-R1-Distill-Llama-8B model to the cognitive science domain. This phase produces our domain-adapted model: [George-API/DeepSeek-Cognitive-Science](https://huggingface.co/George-API/DeepSeek-Cognitive-Science).
|
59 |
+
|
60 |
+
## Overview
|
61 |
+
|
62 |
+
Domain adaptation is the first phase of our training process, where we expose the model to a large corpus of cognitive science texts to help it learn domain-specific vocabulary, concepts, and patterns. This phase prepares the model for the more focused supervised fine-tuning in Phase 2.
|
63 |
+
|
64 |
+
## Files
|
65 |
+
|
66 |
+
- `run_transformers_training.py`: Main script for domain adaptation
|
67 |
+
- `transformers_config.json`: Configuration parameters for training
|
68 |
+
|
69 |
+
## How It Works
|
70 |
+
|
71 |
+
1. **Data Loading**: Loads pre-tokenized data from the Hugging Face dataset
|
72 |
+
2. **Sequential Processing**: Processes data in order, maintaining the integrity of research papers
|
73 |
+
3. **Efficient Training**: Uses 4-bit quantization and LoRA for memory-efficient training
|
74 |
+
4. **Checkpointing**: Saves regular checkpoints to resume training if interrupted
|
75 |
+
5. **Monitoring**: Logs detailed metrics and statistics during training
|
76 |
+
6. **Model Publishing**: Pushes the trained model to Hugging Face Hub as [George-API/DeepSeek-Cognitive-Science](https://huggingface.co/George-API/DeepSeek-Cognitive-Science)
|
77 |
+
|
78 |
+
## Key Features
|
79 |
+
|
80 |
+
### Sequential Processing
|
81 |
+
|
82 |
+
The training script ensures that chunks from the same research paper are processed together by:
|
83 |
+
- Sorting the dataset by ID
|
84 |
+
- Using a SequentialSampler to maintain order
|
85 |
+
- Overriding the default DataLoader to disable shuffling
|
86 |
+
|
87 |
+
### Data Collator
|
88 |
+
|
89 |
+
The `SimpleDataCollator` class:
|
90 |
+
- Preserves pre-tokenized data format
|
91 |
+
- Processes each entry independently
|
92 |
+
- Provides detailed logging of processing statistics
|
93 |
+
- Handles errors gracefully
|
94 |
+
|
95 |
+
### Checkpointing
|
96 |
+
|
97 |
+
The training process saves checkpoints:
|
98 |
+
- Every 100 steps (configurable)
|
99 |
+
- Automatically resumes from the latest checkpoint if interrupted
|
100 |
+
- Maintains up to 3 recent checkpoints
|
101 |
+
|
102 |
+
## Configuration
|
103 |
+
|
104 |
+
Key parameters in `transformers_config.json`:
|
105 |
+
|
106 |
+
- `model_name`: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
|
107 |
+
- `dataset_name`: George-API/cognitive-data
|
108 |
+
- `learning_rate`: 3e-5
|
109 |
+
- `num_train_epochs`: 5
|
110 |
+
- `per_device_train_batch_size`: 4
|
111 |
+
- `gradient_accumulation_steps`: 8
|
112 |
+
- `max_seq_length`: 2048
|
113 |
+
- `push_to_hub`: true
|
114 |
+
- `hub_model_id`: "DeepSeek-Cognitive-Science"
|
115 |
+
|
116 |
+
## Running Domain Adaptation
|
117 |
+
|
118 |
+
To start domain adaptation:
|
119 |
+
|
120 |
+
```bash
|
121 |
+
python run_transformers_training.py
|
122 |
+
```
|
123 |
+
|
124 |
+
The script will:
|
125 |
+
1. Load the dataset and model
|
126 |
+
2. Configure LoRA adapters
|
127 |
+
3. Process the data sequentially
|
128 |
+
4. Train the model for the specified number of epochs
|
129 |
+
5. Save the resulting model and push it to Hugging Face Hub as [George-API/DeepSeek-Cognitive-Science](https://huggingface.co/George-API/DeepSeek-Cognitive-Science)
|
130 |
+
|
131 |
+
## Using the Model
|
132 |
+
|
133 |
+
After training, you can use the domain-adapted model:
|
134 |
+
|
135 |
+
```python
|
136 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
137 |
+
|
138 |
+
# Load the domain-adapted model
|
139 |
+
model_name = "George-API/DeepSeek-Cognitive-Science"
|
140 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
141 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
142 |
+
|
143 |
+
# Generate text
|
144 |
+
input_text = "The hippocampus is involved in"
|
145 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
146 |
+
outputs = model.generate(**inputs, max_length=100)
|
147 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
148 |
+
```
|
149 |
+
|
150 |
+
## Expected Outcomes
|
151 |
+
|
152 |
+
After domain adaptation, the model should:
|
153 |
+
- Have a better understanding of cognitive science terminology
|
154 |
+
- Show improved performance on cognitive science tasks
|
155 |
+
- Be ready for supervised fine-tuning in Phase 2
|
156 |
+
|
157 |
+
## Next Steps
|
158 |
+
|
159 |
+
After completing domain adaptation:
|
160 |
+
1. Evaluate the model's performance on cognitive science texts
|
161 |
+
2. Proceed to Phase 2 (Supervised Fine-Tuning) using the [George-API/DeepSeek-Cognitive-Science](https://huggingface.co/George-API/DeepSeek-Cognitive-Science) model
|
162 |
+
3. Use TensorBoard to analyze training metrics
|
dataset_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "George-API/cognitive-data",
|
3 |
+
"model_name": "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
4 |
+
"train_split": "train",
|
5 |
+
"column_mapping": {
|
6 |
+
"text": "conversations"
|
7 |
+
}
|
8 |
+
}
|
results/Phase1_UNSUPERVISED_train_learning_rate.svg
ADDED
|
results/Phase1_UNSUPERVISED_train_loss.svg
ADDED
|
results/events.out.tfevents.1741231217.r-george-api-deepspace-cn5ooqem-02d88-f8uu9.152.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67550b0077643eb75340daebc9c1f4f43869aa7a446d21ddbe580c135bdb539d
|
3 |
+
size 34821
|
rollback_space.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import logging
|
6 |
+
from pathlib import Path
|
7 |
+
from huggingface_hub import HfApi, login, CommitOperationAdd, CommitOperationDelete
|
8 |
+
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
13 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
14 |
+
)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
def rollback_space(space_id, commit_hash):
|
18 |
+
"""Rollback a Hugging Face space to a specific commit."""
|
19 |
+
try:
|
20 |
+
# Initialize API
|
21 |
+
api = HfApi()
|
22 |
+
logger.info(f"Rolling back space {space_id} to commit {commit_hash}")
|
23 |
+
|
24 |
+
# Get the commit info
|
25 |
+
commit_info = api.list_repo_commits(repo_id=space_id, repo_type="space")[0]
|
26 |
+
logger.info(f"Current commit: {commit_info.commit_id}")
|
27 |
+
|
28 |
+
# Get the files at the target commit
|
29 |
+
target_files = api.list_repo_files(
|
30 |
+
repo_id=space_id,
|
31 |
+
repo_type="space",
|
32 |
+
revision=commit_hash
|
33 |
+
)
|
34 |
+
logger.info(f"Found {len(target_files)} files at target commit")
|
35 |
+
|
36 |
+
# Download each file from the target commit
|
37 |
+
operations = []
|
38 |
+
for file_path in target_files:
|
39 |
+
try:
|
40 |
+
content = api.hf_hub_download(
|
41 |
+
repo_id=space_id,
|
42 |
+
repo_type="space",
|
43 |
+
filename=file_path,
|
44 |
+
revision=commit_hash
|
45 |
+
)
|
46 |
+
with open(content, 'rb') as f:
|
47 |
+
file_content = f.read()
|
48 |
+
operations.append(CommitOperationAdd(path_or_fileobj=file_content, path_in_repo=file_path))
|
49 |
+
logger.info(f"Added {file_path} to rollback operations")
|
50 |
+
except Exception as e:
|
51 |
+
logger.warning(f"Failed to download {file_path}: {str(e)}")
|
52 |
+
|
53 |
+
if operations:
|
54 |
+
# Create rollback commit
|
55 |
+
api.create_commit(
|
56 |
+
repo_id=space_id,
|
57 |
+
repo_type="space",
|
58 |
+
operations=operations,
|
59 |
+
commit_message=f"Rollback to {commit_hash}",
|
60 |
+
revision="main"
|
61 |
+
)
|
62 |
+
logger.info(f"Successfully rolled back to commit {commit_hash}")
|
63 |
+
else:
|
64 |
+
logger.warning("No files to commit")
|
65 |
+
|
66 |
+
return True
|
67 |
+
except Exception as e:
|
68 |
+
logger.error(f"Error rolling back space: {str(e)}")
|
69 |
+
return False
|
70 |
+
|
71 |
+
def main():
|
72 |
+
# Set up environment
|
73 |
+
try:
|
74 |
+
from dotenv import load_dotenv
|
75 |
+
env_path = Path(__file__).parent / ".env"
|
76 |
+
if env_path.exists():
|
77 |
+
load_dotenv(env_path)
|
78 |
+
logger.info(f"Loaded environment variables from {env_path}")
|
79 |
+
except ImportError:
|
80 |
+
logger.warning("python-dotenv not installed, skipping .env loading")
|
81 |
+
|
82 |
+
# Get token
|
83 |
+
token = os.environ.get("HF_TOKEN")
|
84 |
+
if not token:
|
85 |
+
logger.error("HF_TOKEN environment variable not found")
|
86 |
+
return False
|
87 |
+
|
88 |
+
# Login to Hugging Face
|
89 |
+
login(token=token)
|
90 |
+
logger.info("Logged in to Hugging Face")
|
91 |
+
|
92 |
+
# Rollback space
|
93 |
+
space_id = "George-API/DeepSpace"
|
94 |
+
commit_hash = "7ba62477b32b389c2b0d5c85138e8b3c531a76cd"
|
95 |
+
|
96 |
+
success = rollback_space(space_id, commit_hash)
|
97 |
+
if success:
|
98 |
+
print(f"\nSpace {space_id} successfully rolled back to commit {commit_hash}")
|
99 |
+
else:
|
100 |
+
print(f"\nFailed to rollback space {space_id}")
|
101 |
+
|
102 |
+
return success
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
success = main()
|
106 |
+
sys.exit(0 if success else 1)
|
run_transformers_training.py
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
import json
|
7 |
+
import argparse
|
8 |
+
import logging
|
9 |
+
from datetime import datetime
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from datasets import load_dataset
|
13 |
+
from transformers import (
|
14 |
+
AutoModelForCausalLM,
|
15 |
+
AutoTokenizer,
|
16 |
+
TrainingArguments,
|
17 |
+
Trainer,
|
18 |
+
TrainerCallback,
|
19 |
+
set_seed,
|
20 |
+
BitsAndBytesConfig
|
21 |
+
)
|
22 |
+
|
23 |
+
# Configure logging
|
24 |
+
logging.basicConfig(
|
25 |
+
level=logging.INFO,
|
26 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
27 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
28 |
+
)
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
# Check for BitsAndBytes
|
32 |
+
try:
|
33 |
+
from transformers import BitsAndBytesConfig
|
34 |
+
bitsandbytes_available = True
|
35 |
+
except ImportError:
|
36 |
+
bitsandbytes_available = False
|
37 |
+
logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.")
|
38 |
+
|
39 |
+
# Check for PEFT
|
40 |
+
try:
|
41 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
|
42 |
+
peft_available = True
|
43 |
+
except ImportError:
|
44 |
+
peft_available = False
|
45 |
+
logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.")
|
46 |
+
|
47 |
+
def load_env_variables():
|
48 |
+
"""Load environment variables from system, .env file, or Hugging Face Space variables."""
|
49 |
+
# Check if we're running in a Hugging Face Space
|
50 |
+
if os.environ.get("SPACE_ID"):
|
51 |
+
logging.info("Running in Hugging Face Space")
|
52 |
+
|
53 |
+
# Log the presence of variables (without revealing values)
|
54 |
+
logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}")
|
55 |
+
logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}")
|
56 |
+
|
57 |
+
# If username is not set, try to extract from SPACE_ID
|
58 |
+
if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""):
|
59 |
+
username = os.environ.get("SPACE_ID").split("/")[0]
|
60 |
+
os.environ["HF_USERNAME"] = username
|
61 |
+
logging.info(f"Set HF_USERNAME from SPACE_ID: {username}")
|
62 |
+
else:
|
63 |
+
# Try to load from .env file if not in a Space
|
64 |
+
try:
|
65 |
+
from dotenv import load_dotenv
|
66 |
+
# Updated path to .env file in the new directory structure
|
67 |
+
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env")
|
68 |
+
if os.path.exists(env_path):
|
69 |
+
load_dotenv(env_path)
|
70 |
+
logging.info(f"Loaded environment variables from {env_path}")
|
71 |
+
logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}")
|
72 |
+
logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}")
|
73 |
+
logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}")
|
74 |
+
else:
|
75 |
+
logging.warning(f"No .env file found at {env_path}")
|
76 |
+
except ImportError:
|
77 |
+
logging.warning("python-dotenv not installed, not loading from .env file")
|
78 |
+
|
79 |
+
if not os.environ.get("HF_USERNAME"):
|
80 |
+
logger.warning("HF_USERNAME is not set. Using default username.")
|
81 |
+
|
82 |
+
if not os.environ.get("HF_SPACE_NAME"):
|
83 |
+
logger.warning("HF_SPACE_NAME is not set. Using default space name.")
|
84 |
+
|
85 |
+
# Set HF_TOKEN for huggingface_hub
|
86 |
+
if os.environ.get("HF_TOKEN"):
|
87 |
+
os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN")
|
88 |
+
|
89 |
+
def parse_args():
|
90 |
+
parser = argparse.ArgumentParser(description="Fine-tune a language model on a text dataset")
|
91 |
+
parser.add_argument("--config", type=str, default="transformers_config.json", help="Path to the configuration file")
|
92 |
+
return parser.parse_args()
|
93 |
+
|
94 |
+
def main():
|
95 |
+
# Set up logging
|
96 |
+
logger.info("Starting training process")
|
97 |
+
|
98 |
+
# Parse arguments
|
99 |
+
args = parse_args()
|
100 |
+
|
101 |
+
# Load environment variables
|
102 |
+
load_env_variables()
|
103 |
+
|
104 |
+
# Load configuration
|
105 |
+
try:
|
106 |
+
with open(args.config, "r") as f:
|
107 |
+
config = json.load(f)
|
108 |
+
logger.info(f"Loaded configuration from {args.config}")
|
109 |
+
except Exception as e:
|
110 |
+
logger.error(f"Error loading configuration: {e}")
|
111 |
+
return 1
|
112 |
+
|
113 |
+
# Set random seed for reproducibility
|
114 |
+
seed = config.get("seed", 42)
|
115 |
+
set_seed(seed)
|
116 |
+
logger.info(f"Set random seed to {seed}")
|
117 |
+
|
118 |
+
# Check if we're running in a Hugging Face Space
|
119 |
+
if os.environ.get("SPACE_ID") and not os.environ.get("HF_USERNAME"):
|
120 |
+
# Extract username from SPACE_ID
|
121 |
+
username = os.environ.get("SPACE_ID").split("/")[0]
|
122 |
+
logger.info(f"Extracted username from SPACE_ID: {username}")
|
123 |
+
|
124 |
+
# Set hub_model_id if not already set and push_to_hub is enabled
|
125 |
+
if config.get("push_to_hub", False) and not config.get("hub_model_id"):
|
126 |
+
model_name = config.get("model_name", "").split("/")[-1]
|
127 |
+
config["hub_model_id"] = f"{username}/finetuned-{model_name}"
|
128 |
+
logger.info(f"Set hub_model_id to {config['hub_model_id']}")
|
129 |
+
|
130 |
+
# Load model and tokenizer
|
131 |
+
logger.info(f"Loading model: {config.get('model_name')}")
|
132 |
+
|
133 |
+
# Prepare BitsAndBytes config if 4-bit quantization is enabled
|
134 |
+
quantization_config = None
|
135 |
+
if config.get("load_in_4bit", False) and bitsandbytes_available:
|
136 |
+
logger.info("Using 4-bit quantization")
|
137 |
+
quantization_config = BitsAndBytesConfig(
|
138 |
+
load_in_4bit=True,
|
139 |
+
bnb_4bit_quant_type=config.get("bnb_4bit_quant_type", "nf4"),
|
140 |
+
bnb_4bit_compute_dtype=getattr(torch, config.get("bnb_4bit_compute_dtype", "float16")),
|
141 |
+
bnb_4bit_use_double_quant=config.get("bnb_4bit_use_double_quant", True)
|
142 |
+
)
|
143 |
+
|
144 |
+
# Load model with quantization config
|
145 |
+
try:
|
146 |
+
model = AutoModelForCausalLM.from_pretrained(
|
147 |
+
config.get("model_name"),
|
148 |
+
quantization_config=quantization_config,
|
149 |
+
device_map="auto",
|
150 |
+
trust_remote_code=config.get("trust_remote_code", False),
|
151 |
+
use_cache=False # For compatibility with gradient checkpointing
|
152 |
+
)
|
153 |
+
logger.info("Model loaded successfully")
|
154 |
+
|
155 |
+
# Enable gradient checkpointing if available
|
156 |
+
if hasattr(model, "gradient_checkpointing_enable"):
|
157 |
+
try:
|
158 |
+
# Try with use_reentrant parameter (newer versions)
|
159 |
+
model.gradient_checkpointing_enable(use_reentrant=False)
|
160 |
+
logger.info("Gradient checkpointing enabled with use_reentrant=False")
|
161 |
+
except TypeError:
|
162 |
+
# Fall back to version without parameter (older versions)
|
163 |
+
model.gradient_checkpointing_enable()
|
164 |
+
logger.info("Gradient checkpointing enabled without parameters")
|
165 |
+
except Exception as e:
|
166 |
+
logger.error(f"Error loading model: {e}")
|
167 |
+
return 1
|
168 |
+
|
169 |
+
# Load tokenizer
|
170 |
+
try:
|
171 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
172 |
+
config.get("model_name"),
|
173 |
+
use_fast=config.get("use_fast_tokenizer", True),
|
174 |
+
trust_remote_code=config.get("trust_remote_code", False)
|
175 |
+
)
|
176 |
+
logger.info("Tokenizer loaded successfully")
|
177 |
+
|
178 |
+
# Set chat template if specified
|
179 |
+
if config.get("chat_template"):
|
180 |
+
tokenizer.chat_template = config.get("chat_template")
|
181 |
+
logger.info(f"Set chat template to {config.get('chat_template')}")
|
182 |
+
|
183 |
+
# Ensure pad token is properly set
|
184 |
+
if tokenizer.pad_token_id is None:
|
185 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
186 |
+
logger.info(f"Set pad_token_id to eos_token_id: {tokenizer.pad_token_id}")
|
187 |
+
except Exception as e:
|
188 |
+
logger.error(f"Error loading tokenizer: {e}")
|
189 |
+
return 1
|
190 |
+
|
191 |
+
# Prepare model for k-bit training if using PEFT
|
192 |
+
if config.get("use_peft", False) and peft_available:
|
193 |
+
logger.info("Preparing model for parameter-efficient fine-tuning")
|
194 |
+
try:
|
195 |
+
model = prepare_model_for_kbit_training(model)
|
196 |
+
|
197 |
+
# Get target modules
|
198 |
+
target_modules = config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"])
|
199 |
+
|
200 |
+
# Create LoRA config
|
201 |
+
lora_config = LoraConfig(
|
202 |
+
r=config.get("lora_r", 16),
|
203 |
+
lora_alpha=config.get("lora_alpha", 32),
|
204 |
+
lora_dropout=config.get("lora_dropout", 0.05),
|
205 |
+
bias="none",
|
206 |
+
task_type="CAUSAL_LM",
|
207 |
+
target_modules=target_modules
|
208 |
+
)
|
209 |
+
|
210 |
+
# Apply LoRA to model
|
211 |
+
model = get_peft_model(model, lora_config)
|
212 |
+
logger.info(f"Applied LoRA with r={config.get('lora_r', 16)}, alpha={config.get('lora_alpha', 32)}")
|
213 |
+
except Exception as e:
|
214 |
+
logger.error(f"Error setting up PEFT: {e}")
|
215 |
+
return 1
|
216 |
+
|
217 |
+
# Load dataset
|
218 |
+
logger.info(f"Loading dataset: {config.get('dataset_name')}")
|
219 |
+
try:
|
220 |
+
dataset = load_dataset(config.get("dataset_name"))
|
221 |
+
logger.info(f"Dataset loaded successfully with {len(dataset['train'])} training examples")
|
222 |
+
|
223 |
+
# Sort dataset by ID to ensure chunks from the same paper are processed together
|
224 |
+
logger.info("Sorting dataset by ID to maintain paper chunk order")
|
225 |
+
def sort_by_id(example):
|
226 |
+
# Extract ID as integer if possible, otherwise keep as string
|
227 |
+
try:
|
228 |
+
return int(example['id'])
|
229 |
+
except (ValueError, TypeError):
|
230 |
+
return example['id']
|
231 |
+
|
232 |
+
# Apply sorting to the dataset
|
233 |
+
dataset['train'] = dataset['train'].sort('id')
|
234 |
+
logger.info("Dataset sorted by ID")
|
235 |
+
|
236 |
+
# Log the first few IDs to verify sorting
|
237 |
+
sample_ids = [example['id'] for example in dataset['train'].select(range(min(5, len(dataset['train']))))]
|
238 |
+
logger.info(f"First few IDs after sorting: {sample_ids}")
|
239 |
+
except Exception as e:
|
240 |
+
logger.error(f"Error loading or sorting dataset: {e}")
|
241 |
+
return 1
|
242 |
+
|
243 |
+
# Simple data collator that processes each entry independently
|
244 |
+
# This ensures entries are not combined based on token size, even when batch size > 1
|
245 |
+
class SimpleDataCollator:
|
246 |
+
def __init__(self, tokenizer):
|
247 |
+
self.tokenizer = tokenizer
|
248 |
+
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
|
249 |
+
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
250 |
+
self.prompt_counter = 0 # Global counter for all prompts
|
251 |
+
self.paper_counters = {} # Track prompts per paper ID
|
252 |
+
logger.info("SimpleDataCollator initialized - processing entries independently")
|
253 |
+
|
254 |
+
def __call__(self, features):
|
255 |
+
batch = {"input_ids": [], "attention_mask": [], "labels": []}
|
256 |
+
|
257 |
+
# Process each entry independently (no combining based on token size)
|
258 |
+
for example in features:
|
259 |
+
try:
|
260 |
+
# Get ID and conversation fields
|
261 |
+
paper_id = example.get("id", "") if isinstance(example, dict) else getattr(example, "id", "")
|
262 |
+
conversation = example.get("conversations", []) if isinstance(example, dict) else getattr(example, "conversations", [])
|
263 |
+
|
264 |
+
# Skip empty entries
|
265 |
+
if not conversation:
|
266 |
+
self.stats["skipped"] += 1
|
267 |
+
continue
|
268 |
+
|
269 |
+
# Increment global prompt counter
|
270 |
+
self.prompt_counter += 1
|
271 |
+
|
272 |
+
# Track prompts per paper
|
273 |
+
if paper_id not in self.paper_counters:
|
274 |
+
self.paper_counters[paper_id] = 0
|
275 |
+
self.paper_counters[paper_id] += 1
|
276 |
+
|
277 |
+
# Create a formatted prompt with tracking information
|
278 |
+
full_content = f"Prompt #{self.prompt_counter} | Paper ID: {paper_id} | Paper Chunk: {self.paper_counters[paper_id]}\n\n"
|
279 |
+
|
280 |
+
for message in conversation:
|
281 |
+
# Extract role and content
|
282 |
+
if isinstance(message, dict):
|
283 |
+
role = message.get("role", "")
|
284 |
+
content = message.get("content", "")
|
285 |
+
else:
|
286 |
+
role = getattr(message, "role", "")
|
287 |
+
content = getattr(message, "content", "")
|
288 |
+
|
289 |
+
# Add role and content to the full content
|
290 |
+
full_content += f"{role}: {content}\n\n"
|
291 |
+
|
292 |
+
# Tokenize the full content
|
293 |
+
input_ids = self.tokenizer.encode(full_content, add_special_tokens=True)
|
294 |
+
attention_mask = [1] * len(input_ids)
|
295 |
+
|
296 |
+
# Truncate if necessary
|
297 |
+
max_length = config.get("max_seq_length", 2048)
|
298 |
+
if len(input_ids) > max_length:
|
299 |
+
input_ids = input_ids[:max_length]
|
300 |
+
attention_mask = attention_mask[:max_length]
|
301 |
+
|
302 |
+
# Only add to batch if we have data
|
303 |
+
if len(input_ids) > 0:
|
304 |
+
# For content understanding, use the same tokens as labels
|
305 |
+
labels = input_ids.copy()
|
306 |
+
|
307 |
+
batch["input_ids"].append(input_ids)
|
308 |
+
batch["attention_mask"].append(attention_mask)
|
309 |
+
batch["labels"].append(labels)
|
310 |
+
|
311 |
+
self.stats["processed"] += 1
|
312 |
+
self.stats["total_tokens"] += len(input_ids)
|
313 |
+
|
314 |
+
# Debug logging for the first few examples
|
315 |
+
if self.stats["processed"] <= 3:
|
316 |
+
logger.info(f"Example {self.stats['processed']} - Prompt #{self.prompt_counter} | Paper ID: {paper_id} | Paper Chunk: {self.paper_counters[paper_id]}")
|
317 |
+
logger.info(f"Token count: {len(input_ids)}")
|
318 |
+
if len(input_ids) < 50: # Catch potentially short sequences
|
319 |
+
logger.info(f"WARNING: Short token sequence: {len(input_ids)} tokens")
|
320 |
+
logger.info(f"Content preview: {full_content[:200]}...")
|
321 |
+
else:
|
322 |
+
self.stats["skipped"] += 1
|
323 |
+
|
324 |
+
except Exception as e:
|
325 |
+
logger.warning(f"Error processing example: {str(e)[:100]}...")
|
326 |
+
self.stats["skipped"] += 1
|
327 |
+
continue
|
328 |
+
|
329 |
+
# Pad the batch
|
330 |
+
if not batch["input_ids"]:
|
331 |
+
logger.warning("Empty batch, returning dummy tensors")
|
332 |
+
return {
|
333 |
+
"input_ids": torch.zeros((1, 1), dtype=torch.long),
|
334 |
+
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
|
335 |
+
"labels": torch.zeros((1, 1), dtype=torch.long)
|
336 |
+
}
|
337 |
+
|
338 |
+
max_length = max(len(ids) for ids in batch["input_ids"])
|
339 |
+
|
340 |
+
# Pad all sequences to max_length
|
341 |
+
for i in range(len(batch["input_ids"])):
|
342 |
+
padding_length = max_length - len(batch["input_ids"][i])
|
343 |
+
if padding_length > 0:
|
344 |
+
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
|
345 |
+
batch["attention_mask"][i].extend([0] * padding_length)
|
346 |
+
batch["labels"][i].extend([-100] * padding_length) # Don't compute loss on padding
|
347 |
+
|
348 |
+
# Convert to tensors
|
349 |
+
batch = {k: torch.tensor(v) for k, v in batch.items()}
|
350 |
+
|
351 |
+
# Log stats periodically (every 100 batches)
|
352 |
+
if self.stats["processed"] % 100 == 0 and self.stats["processed"] > 0:
|
353 |
+
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
|
354 |
+
f"skipped={self.stats['skipped']}, "
|
355 |
+
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}, "
|
356 |
+
f"unique_papers={len(self.paper_counters)}")
|
357 |
+
|
358 |
+
return batch
|
359 |
+
|
360 |
+
# Create data collator
|
361 |
+
data_collator = SimpleDataCollator(tokenizer)
|
362 |
+
|
363 |
+
# Simple logging callback
|
364 |
+
class LoggingCallback(TrainerCallback):
|
365 |
+
def __init__(self):
|
366 |
+
self.last_log_time = datetime.now()
|
367 |
+
self.training_start_time = datetime.now()
|
368 |
+
|
369 |
+
def on_step_end(self, args, state, control, **kwargs):
|
370 |
+
# Log every 50 steps or every 5 minutes, whichever comes first
|
371 |
+
current_time = datetime.now()
|
372 |
+
time_diff = (current_time - self.last_log_time).total_seconds()
|
373 |
+
elapsed_time = (current_time - self.training_start_time).total_seconds() / 60 # in minutes
|
374 |
+
|
375 |
+
if state.global_step % 50 == 0 or time_diff > 300: # 300 seconds = 5 minutes
|
376 |
+
loss = state.log_history[-1]['loss'] if state.log_history else 'N/A'
|
377 |
+
lr = state.log_history[-1]['learning_rate'] if state.log_history else 'N/A'
|
378 |
+
|
379 |
+
if isinstance(loss, float):
|
380 |
+
loss_str = f"{loss:.4f}"
|
381 |
+
else:
|
382 |
+
loss_str = str(loss)
|
383 |
+
|
384 |
+
if isinstance(lr, float):
|
385 |
+
lr_str = f"{lr:.8f}"
|
386 |
+
else:
|
387 |
+
lr_str = str(lr)
|
388 |
+
|
389 |
+
logger.info(f"Step: {state.global_step} | Loss: {loss_str} | LR: {lr_str} | Elapsed: {elapsed_time:.2f} min")
|
390 |
+
self.last_log_time = current_time
|
391 |
+
|
392 |
+
# Set up training arguments
|
393 |
+
logger.info("Setting up training arguments")
|
394 |
+
training_args = TrainingArguments(
|
395 |
+
output_dir=config.get("output_dir", "./results"),
|
396 |
+
num_train_epochs=config.get("num_train_epochs", 3),
|
397 |
+
per_device_train_batch_size=config.get("per_device_train_batch_size", 4), # Use config value, can be > 1
|
398 |
+
gradient_accumulation_steps=config.get("gradient_accumulation_steps", 8),
|
399 |
+
learning_rate=config.get("learning_rate", 5e-5),
|
400 |
+
weight_decay=config.get("weight_decay", 0.01),
|
401 |
+
warmup_ratio=config.get("warmup_ratio", 0.1),
|
402 |
+
lr_scheduler_type=config.get("lr_scheduler_type", "linear"),
|
403 |
+
logging_steps=config.get("logging_steps", 10),
|
404 |
+
save_strategy=config.get("save_strategy", "steps"), # Updated to use steps by default
|
405 |
+
save_steps=config.get("save_steps", 100), # Save every 100 steps by default
|
406 |
+
save_total_limit=config.get("save_total_limit", 3), # Keep last 3 checkpoints
|
407 |
+
fp16=config.get("fp16", True),
|
408 |
+
bf16=config.get("bf16", False),
|
409 |
+
max_grad_norm=config.get("max_grad_norm", 1.0),
|
410 |
+
push_to_hub=config.get("push_to_hub", False),
|
411 |
+
hub_model_id=config.get("hub_model_id", None),
|
412 |
+
hub_token=os.environ.get("HF_TOKEN", None),
|
413 |
+
report_to="tensorboard",
|
414 |
+
remove_unused_columns=False, # Keep the conversations column
|
415 |
+
gradient_checkpointing=True, # Enable gradient checkpointing
|
416 |
+
dataloader_pin_memory=False, # Reduce memory usage
|
417 |
+
optim=config.get("optim", "adamw_torch"),
|
418 |
+
ddp_find_unused_parameters=False, # Improve distributed training efficiency
|
419 |
+
dataloader_drop_last=False, # Process all examples
|
420 |
+
dataloader_num_workers=0, # Sequential data loading
|
421 |
+
)
|
422 |
+
|
423 |
+
# Create a sequential sampler to ensure dataset is processed in order
|
424 |
+
logger.info("Creating sequential sampler to maintain dataset order")
|
425 |
+
|
426 |
+
# Create trainer with callback
|
427 |
+
logger.info("Creating trainer")
|
428 |
+
|
429 |
+
# Check if we should resume from checkpoint
|
430 |
+
resume_from_checkpoint = False
|
431 |
+
output_dir = config.get("output_dir", "./results")
|
432 |
+
if os.path.exists(output_dir):
|
433 |
+
checkpoints = [folder for folder in os.listdir(output_dir) if folder.startswith("checkpoint-")]
|
434 |
+
if checkpoints:
|
435 |
+
latest_checkpoint = max(checkpoints, key=lambda x: int(x.split("-")[1]))
|
436 |
+
resume_from_checkpoint = os.path.join(output_dir, latest_checkpoint)
|
437 |
+
logger.info(f"Found checkpoint: {resume_from_checkpoint}. Training will resume from this point.")
|
438 |
+
|
439 |
+
trainer = Trainer(
|
440 |
+
model=model,
|
441 |
+
args=training_args,
|
442 |
+
train_dataset=dataset["train"],
|
443 |
+
data_collator=data_collator,
|
444 |
+
callbacks=[LoggingCallback()]
|
445 |
+
)
|
446 |
+
|
447 |
+
# Override the default data loader to disable shuffling
|
448 |
+
# This is necessary because TrainingArguments doesn't have a direct shuffle parameter
|
449 |
+
def get_train_dataloader_no_shuffle():
|
450 |
+
"""Create a train DataLoader with shuffling disabled."""
|
451 |
+
logger.info("Creating train dataloader with sequential sampler (no shuffling)")
|
452 |
+
|
453 |
+
# Create a sequential sampler to ensure dataset is processed in order
|
454 |
+
train_sampler = torch.utils.data.SequentialSampler(dataset["train"])
|
455 |
+
|
456 |
+
return torch.utils.data.DataLoader(
|
457 |
+
dataset["train"],
|
458 |
+
batch_size=training_args.per_device_train_batch_size,
|
459 |
+
sampler=train_sampler, # Use sequential sampler instead of shuffle parameter
|
460 |
+
collate_fn=data_collator,
|
461 |
+
drop_last=False,
|
462 |
+
num_workers=0,
|
463 |
+
pin_memory=False
|
464 |
+
)
|
465 |
+
|
466 |
+
# Replace the default data loader with our non-shuffling version
|
467 |
+
trainer.get_train_dataloader = get_train_dataloader_no_shuffle
|
468 |
+
|
469 |
+
# Start training
|
470 |
+
logger.info("Starting training")
|
471 |
+
logger.info(f"Processing with batch size = {training_args.per_device_train_batch_size}, each entry processed independently")
|
472 |
+
|
473 |
+
# Create a lock file to indicate training is in progress
|
474 |
+
lock_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "TRAINING_IN_PROGRESS.lock")
|
475 |
+
with open(lock_file, "w") as f:
|
476 |
+
f.write(f"Training started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
|
477 |
+
f.write(f"Expected completion: After {training_args.num_train_epochs} epochs\n")
|
478 |
+
f.write("DO NOT UPDATE OR RESTART THIS SPACE UNTIL TRAINING COMPLETES\n")
|
479 |
+
logger.info(f"Created lock file: {lock_file}")
|
480 |
+
|
481 |
+
try:
|
482 |
+
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
483 |
+
logger.info("Training completed successfully")
|
484 |
+
|
485 |
+
# Save model
|
486 |
+
if config.get("push_to_hub", False):
|
487 |
+
logger.info(f"Pushing model to hub: {config.get('hub_model_id')}")
|
488 |
+
trainer.push_to_hub()
|
489 |
+
logger.info("Model pushed to hub successfully")
|
490 |
+
else:
|
491 |
+
logger.info(f"Saving model to {config.get('output_dir', './results')}")
|
492 |
+
trainer.save_model()
|
493 |
+
logger.info("Model saved successfully")
|
494 |
+
except Exception as e:
|
495 |
+
logger.error(f"Training failed with error: {str(e)}")
|
496 |
+
raise
|
497 |
+
finally:
|
498 |
+
# Remove the lock file when training completes or fails
|
499 |
+
if os.path.exists(lock_file):
|
500 |
+
os.remove(lock_file)
|
501 |
+
logger.info(f"Removed lock file: {lock_file}")
|
502 |
+
|
503 |
+
return 0
|
504 |
+
|
505 |
+
if __name__ == "__main__":
|
506 |
+
sys.exit(main())
|
transformers_config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name": "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
3 |
+
"dataset_name": "George-API/cognitive-data",
|
4 |
+
"output_dir": "./results",
|
5 |
+
"seed": 42,
|
6 |
+
|
7 |
+
"# Tokenization settings": "These settings ensure we preserve existing tokenization",
|
8 |
+
"trust_remote_code": true,
|
9 |
+
"use_fast_tokenizer": true,
|
10 |
+
"skip_tokenization": true,
|
11 |
+
"max_seq_length": 2048,
|
12 |
+
"chat_template": "chatml",
|
13 |
+
|
14 |
+
"# Quantization settings": "4-bit quantization for memory efficiency",
|
15 |
+
"load_in_4bit": true,
|
16 |
+
"bnb_4bit_quant_type": "nf4",
|
17 |
+
"bnb_4bit_compute_dtype": "float16",
|
18 |
+
"bnb_4bit_use_double_quant": true,
|
19 |
+
|
20 |
+
"# PEFT settings": "LoRA configuration for efficient fine-tuning",
|
21 |
+
"use_peft": true,
|
22 |
+
"lora_r": 16,
|
23 |
+
"lora_alpha": 32,
|
24 |
+
"lora_dropout": 0.05,
|
25 |
+
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
26 |
+
|
27 |
+
"# Training parameters": "Optimized for cognitive science fine-tuning",
|
28 |
+
"num_train_epochs": 5,
|
29 |
+
"per_device_train_batch_size": 4,
|
30 |
+
"gradient_accumulation_steps": 8,
|
31 |
+
"learning_rate": 3e-5,
|
32 |
+
"weight_decay": 0.01,
|
33 |
+
"warmup_ratio": 0.1,
|
34 |
+
"lr_scheduler_type": "linear",
|
35 |
+
"logging_steps": 10,
|
36 |
+
"save_strategy": "steps",
|
37 |
+
"save_steps": 100,
|
38 |
+
"save_total_limit": 3,
|
39 |
+
"fp16": true,
|
40 |
+
"bf16": false,
|
41 |
+
"max_grad_norm": 0.5,
|
42 |
+
|
43 |
+
"# Hugging Face Hub settings": "For saving and sharing the model",
|
44 |
+
"push_to_hub": true,
|
45 |
+
"hub_model_id": "DeepSeek-Cognitive-Science",
|
46 |
+
"hub_private_repo": true
|
47 |
+
}
|
update_space.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
"""
|
4 |
+
Script to update your Hugging Face Space for R1-Distill-LLama-8b training.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
import json
|
10 |
+
import argparse
|
11 |
+
import logging
|
12 |
+
from pathlib import Path
|
13 |
+
from huggingface_hub import HfApi, login
|
14 |
+
|
15 |
+
# Configure logging
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO,
|
18 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
19 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
20 |
+
)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
def load_env_variables():
|
24 |
+
"""Load environment variables from system or .env file."""
|
25 |
+
# First try to load from local .env file
|
26 |
+
try:
|
27 |
+
from dotenv import load_dotenv
|
28 |
+
env_path = Path(__file__).parent / ".env"
|
29 |
+
if env_path.exists():
|
30 |
+
# Load and explicitly set environment variables
|
31 |
+
with open(env_path) as f:
|
32 |
+
for line in f:
|
33 |
+
if line.strip() and not line.startswith('#'):
|
34 |
+
key, value = line.strip().split('=', 1)
|
35 |
+
os.environ[key] = value.strip()
|
36 |
+
logger.info(f"Loaded environment variables from {env_path}")
|
37 |
+
else:
|
38 |
+
logger.warning(f"No .env file found at {env_path}")
|
39 |
+
except ImportError:
|
40 |
+
logger.warning("python-dotenv not installed, skipping .env loading")
|
41 |
+
|
42 |
+
# Set default space name if not provided
|
43 |
+
if "HF_SPACE_NAME" not in os.environ:
|
44 |
+
os.environ["HF_SPACE_NAME"] = "r1training"
|
45 |
+
|
46 |
+
# Verify required variables
|
47 |
+
required_vars = {
|
48 |
+
"HF_TOKEN": os.environ.get("HF_TOKEN"),
|
49 |
+
"HF_USERNAME": os.environ.get("HF_USERNAME"),
|
50 |
+
"HF_SPACE_NAME": os.environ.get("HF_SPACE_NAME")
|
51 |
+
}
|
52 |
+
|
53 |
+
missing_vars = [k for k, v in required_vars.items() if not v]
|
54 |
+
if missing_vars:
|
55 |
+
raise ValueError(f"Missing required environment variables: {', '.join(missing_vars)}")
|
56 |
+
|
57 |
+
logger.info(f"Using environment variables: USERNAME={required_vars['HF_USERNAME']}, SPACE_NAME={required_vars['HF_SPACE_NAME']}")
|
58 |
+
return required_vars
|
59 |
+
|
60 |
+
def verify_configs():
|
61 |
+
"""Verify that all necessary configuration files exist and are valid."""
|
62 |
+
current_dir = Path(__file__).parent
|
63 |
+
required_files = [
|
64 |
+
"transformers_config.json",
|
65 |
+
"dataset_config.json",
|
66 |
+
"README.md",
|
67 |
+
"run_transformers_training.py"
|
68 |
+
]
|
69 |
+
|
70 |
+
missing_files = []
|
71 |
+
for file in required_files:
|
72 |
+
if not (current_dir / file).exists():
|
73 |
+
missing_files.append(file)
|
74 |
+
|
75 |
+
if missing_files:
|
76 |
+
raise FileNotFoundError(f"Missing required files: {', '.join(missing_files)}")
|
77 |
+
|
78 |
+
# Verify JSON configs
|
79 |
+
json_files = [f for f in required_files if f.endswith('.json')]
|
80 |
+
for json_file in json_files:
|
81 |
+
try:
|
82 |
+
with open(current_dir / json_file) as f:
|
83 |
+
json.load(f)
|
84 |
+
logger.info(f"Verified {json_file} is valid JSON")
|
85 |
+
except json.JSONDecodeError as e:
|
86 |
+
raise ValueError(f"Invalid JSON in {json_file}: {e}")
|
87 |
+
|
88 |
+
def create_space(username, space_name):
|
89 |
+
"""Create or get a Hugging Face Space."""
|
90 |
+
try:
|
91 |
+
api = HfApi()
|
92 |
+
space_id = f"{username}/{space_name}"
|
93 |
+
logger.info(f"Checking Space {space_id}...")
|
94 |
+
|
95 |
+
# First try to get the space
|
96 |
+
try:
|
97 |
+
space_info = api.space_info(repo_id=space_id)
|
98 |
+
logger.info(f"Space {space_id} already exists")
|
99 |
+
return space_info
|
100 |
+
except Exception as e:
|
101 |
+
logger.info(f"Space {space_id} does not exist, creating new space...")
|
102 |
+
|
103 |
+
# Create new space
|
104 |
+
try:
|
105 |
+
api.create_repo(
|
106 |
+
repo_id=space_id,
|
107 |
+
private=False,
|
108 |
+
repo_type="space",
|
109 |
+
space_sdk="gradio"
|
110 |
+
)
|
111 |
+
logger.info(f"Created new space: {space_id}")
|
112 |
+
return api.space_info(repo_id=space_id)
|
113 |
+
except Exception as e:
|
114 |
+
logger.error(f"Failed to create space: {str(e)}")
|
115 |
+
raise
|
116 |
+
except Exception as e:
|
117 |
+
raise RuntimeError(f"Error with Space {space_id}: {str(e)}")
|
118 |
+
|
119 |
+
def main():
|
120 |
+
parser = argparse.ArgumentParser(description='Update Hugging Face Space for R1-Distill-LLama-8b training')
|
121 |
+
parser.add_argument('--space_name', type=str, help='Space name (default: from env)')
|
122 |
+
parser.add_argument('--force', action='store_true', help='Skip confirmation')
|
123 |
+
args = parser.parse_args()
|
124 |
+
|
125 |
+
if not args.force:
|
126 |
+
print("\n" + "!"*80)
|
127 |
+
print("WARNING: Updating the Space will INTERRUPT any ongoing training!")
|
128 |
+
print("Make sure all checkpoints are saved before proceeding.")
|
129 |
+
print("!"*80 + "\n")
|
130 |
+
|
131 |
+
confirm = input("Type 'update' to confirm: ")
|
132 |
+
if confirm.lower() != 'update':
|
133 |
+
logger.info("Update cancelled")
|
134 |
+
return False
|
135 |
+
|
136 |
+
try:
|
137 |
+
# Load environment variables
|
138 |
+
env_vars = load_env_variables()
|
139 |
+
|
140 |
+
# Verify configurations
|
141 |
+
verify_configs()
|
142 |
+
logger.info("All configuration files verified successfully")
|
143 |
+
|
144 |
+
# Get space name from args or env, prioritize args
|
145 |
+
space_name = args.space_name if args.space_name else env_vars["HF_SPACE_NAME"]
|
146 |
+
logger.info(f"Using space name: {space_name}")
|
147 |
+
|
148 |
+
# Login to Hugging Face
|
149 |
+
logger.info("Logging in to Hugging Face...")
|
150 |
+
login(token=env_vars["HF_TOKEN"])
|
151 |
+
logger.info("Successfully logged in to Hugging Face")
|
152 |
+
|
153 |
+
# Create/get space
|
154 |
+
space_info = create_space(env_vars["HF_USERNAME"], space_name)
|
155 |
+
logger.info(f"Space info: {space_info}")
|
156 |
+
|
157 |
+
# Upload files
|
158 |
+
current_dir = Path(__file__).parent
|
159 |
+
logger.info(f"Uploading files from {current_dir} to Space {env_vars['HF_USERNAME']}/{space_name}...")
|
160 |
+
|
161 |
+
# Create .gitignore
|
162 |
+
with open(current_dir / ".gitignore", "w") as f:
|
163 |
+
f.write(".env\n*.pyc\n__pycache__\n")
|
164 |
+
logger.info("Created .gitignore file")
|
165 |
+
|
166 |
+
api = HfApi()
|
167 |
+
api.upload_folder(
|
168 |
+
folder_path=str(current_dir),
|
169 |
+
repo_id=f"{env_vars['HF_USERNAME']}/{space_name}",
|
170 |
+
repo_type="space",
|
171 |
+
ignore_patterns=[".env", "*.pyc", "__pycache__", "TRAINING_IN_PROGRESS.lock"]
|
172 |
+
)
|
173 |
+
|
174 |
+
logger.info(f"Files uploaded successfully")
|
175 |
+
space_url = f"https://huggingface.co/spaces/{env_vars['HF_USERNAME']}/{space_name}"
|
176 |
+
logger.info(f"Space URL: {space_url}")
|
177 |
+
print(f"\nSpace created successfully! You can view it at:\n{space_url}")
|
178 |
+
return True
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
logger.error(f"Error updating Space: {str(e)}")
|
182 |
+
return False
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
success = main()
|
186 |
+
sys.exit(0 if success else 1)
|