Spaces:
Sleeping
Sleeping
File size: 23,254 Bytes
335441e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
#!/usr/bin/env python
# coding=utf-8
import os
import sys
import json
import argparse
import logging
from datetime import datetime
import torch
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
TrainerCallback,
set_seed,
BitsAndBytesConfig
)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
# Check for BitsAndBytes
try:
from transformers import BitsAndBytesConfig
bitsandbytes_available = True
except ImportError:
bitsandbytes_available = False
logger.warning("BitsAndBytes not available. 4-bit quantization will not be used.")
# Check for PEFT
try:
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
peft_available = True
except ImportError:
peft_available = False
logger.warning("PEFT not available. Parameter-efficient fine-tuning will not be used.")
def load_env_variables():
"""Load environment variables from system, .env file, or Hugging Face Space variables."""
# Check if we're running in a Hugging Face Space
if os.environ.get("SPACE_ID"):
logging.info("Running in Hugging Face Space")
# Log the presence of variables (without revealing values)
logging.info(f"HF_TOKEN available: {bool(os.environ.get('HF_TOKEN'))}")
logging.info(f"HF_USERNAME available: {bool(os.environ.get('HF_USERNAME'))}")
# If username is not set, try to extract from SPACE_ID
if not os.environ.get("HF_USERNAME") and "/" in os.environ.get("SPACE_ID", ""):
username = os.environ.get("SPACE_ID").split("/")[0]
os.environ["HF_USERNAME"] = username
logging.info(f"Set HF_USERNAME from SPACE_ID: {username}")
else:
# Try to load from .env file if not in a Space
try:
from dotenv import load_dotenv
# Updated path to .env file in the new directory structure
env_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "shared", ".env")
if os.path.exists(env_path):
load_dotenv(env_path)
logging.info(f"Loaded environment variables from {env_path}")
logging.info(f"HF_TOKEN loaded from .env file: {bool(os.environ.get('HF_TOKEN'))}")
logging.info(f"HF_USERNAME loaded from .env file: {bool(os.environ.get('HF_USERNAME'))}")
logging.info(f"HF_SPACE_NAME loaded from .env file: {bool(os.environ.get('HF_SPACE_NAME'))}")
else:
logging.warning(f"No .env file found at {env_path}")
except ImportError:
logging.warning("python-dotenv not installed, not loading from .env file")
if not os.environ.get("HF_USERNAME"):
logger.warning("HF_USERNAME is not set. Using default username.")
if not os.environ.get("HF_SPACE_NAME"):
logger.warning("HF_SPACE_NAME is not set. Using default space name.")
# Set HF_TOKEN for huggingface_hub
if os.environ.get("HF_TOKEN"):
os.environ["HUGGING_FACE_HUB_TOKEN"] = os.environ.get("HF_TOKEN")
def parse_args():
parser = argparse.ArgumentParser(description="Fine-tune a language model on a text dataset")
parser.add_argument("--config", type=str, default="transformers_config.json", help="Path to the configuration file")
return parser.parse_args()
def main():
# Set up logging
logger.info("Starting training process")
# Parse arguments
args = parse_args()
# Load environment variables
load_env_variables()
# Load configuration
try:
with open(args.config, "r") as f:
config = json.load(f)
logger.info(f"Loaded configuration from {args.config}")
except Exception as e:
logger.error(f"Error loading configuration: {e}")
return 1
# Set random seed for reproducibility
seed = config.get("seed", 42)
set_seed(seed)
logger.info(f"Set random seed to {seed}")
# Check if we're running in a Hugging Face Space
if os.environ.get("SPACE_ID") and not os.environ.get("HF_USERNAME"):
# Extract username from SPACE_ID
username = os.environ.get("SPACE_ID").split("/")[0]
logger.info(f"Extracted username from SPACE_ID: {username}")
# Set hub_model_id if not already set and push_to_hub is enabled
if config.get("push_to_hub", False) and not config.get("hub_model_id"):
model_name = config.get("model_name", "").split("/")[-1]
config["hub_model_id"] = f"{username}/finetuned-{model_name}"
logger.info(f"Set hub_model_id to {config['hub_model_id']}")
# Load model and tokenizer
logger.info(f"Loading model: {config.get('model_name')}")
# Prepare BitsAndBytes config if 4-bit quantization is enabled
quantization_config = None
if config.get("load_in_4bit", False) and bitsandbytes_available:
logger.info("Using 4-bit quantization")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type=config.get("bnb_4bit_quant_type", "nf4"),
bnb_4bit_compute_dtype=getattr(torch, config.get("bnb_4bit_compute_dtype", "float16")),
bnb_4bit_use_double_quant=config.get("bnb_4bit_use_double_quant", True)
)
# Load model with quantization config
try:
model = AutoModelForCausalLM.from_pretrained(
config.get("model_name"),
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=config.get("trust_remote_code", False),
use_cache=False # For compatibility with gradient checkpointing
)
logger.info("Model loaded successfully")
# Enable gradient checkpointing if available
if hasattr(model, "gradient_checkpointing_enable"):
try:
# Try with use_reentrant parameter (newer versions)
model.gradient_checkpointing_enable(use_reentrant=False)
logger.info("Gradient checkpointing enabled with use_reentrant=False")
except TypeError:
# Fall back to version without parameter (older versions)
model.gradient_checkpointing_enable()
logger.info("Gradient checkpointing enabled without parameters")
except Exception as e:
logger.error(f"Error loading model: {e}")
return 1
# Load tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(
config.get("model_name"),
use_fast=config.get("use_fast_tokenizer", True),
trust_remote_code=config.get("trust_remote_code", False)
)
logger.info("Tokenizer loaded successfully")
# Set chat template if specified
if config.get("chat_template"):
tokenizer.chat_template = config.get("chat_template")
logger.info(f"Set chat template to {config.get('chat_template')}")
# Ensure pad token is properly set
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.info(f"Set pad_token_id to eos_token_id: {tokenizer.pad_token_id}")
except Exception as e:
logger.error(f"Error loading tokenizer: {e}")
return 1
# Prepare model for k-bit training if using PEFT
if config.get("use_peft", False) and peft_available:
logger.info("Preparing model for parameter-efficient fine-tuning")
try:
model = prepare_model_for_kbit_training(model)
# Get target modules
target_modules = config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"])
# Create LoRA config
lora_config = LoraConfig(
r=config.get("lora_r", 16),
lora_alpha=config.get("lora_alpha", 32),
lora_dropout=config.get("lora_dropout", 0.05),
bias="none",
task_type="CAUSAL_LM",
target_modules=target_modules
)
# Apply LoRA to model
model = get_peft_model(model, lora_config)
logger.info(f"Applied LoRA with r={config.get('lora_r', 16)}, alpha={config.get('lora_alpha', 32)}")
except Exception as e:
logger.error(f"Error setting up PEFT: {e}")
return 1
# Load dataset
logger.info(f"Loading dataset: {config.get('dataset_name')}")
try:
dataset = load_dataset(config.get("dataset_name"))
logger.info(f"Dataset loaded successfully with {len(dataset['train'])} training examples")
# Sort dataset by ID to ensure chunks from the same paper are processed together
logger.info("Sorting dataset by ID to maintain paper chunk order")
def sort_by_id(example):
# Extract ID as integer if possible, otherwise keep as string
try:
return int(example['id'])
except (ValueError, TypeError):
return example['id']
# Apply sorting to the dataset
dataset['train'] = dataset['train'].sort('id')
logger.info("Dataset sorted by ID")
# Log the first few IDs to verify sorting
sample_ids = [example['id'] for example in dataset['train'].select(range(min(5, len(dataset['train']))))]
logger.info(f"First few IDs after sorting: {sample_ids}")
except Exception as e:
logger.error(f"Error loading or sorting dataset: {e}")
return 1
# Simple data collator that processes each entry independently
# This ensures entries are not combined based on token size, even when batch size > 1
class SimpleDataCollator:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.stats = {"processed": 0, "skipped": 0, "total_tokens": 0}
self.pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
self.prompt_counter = 0 # Global counter for all prompts
self.paper_counters = {} # Track prompts per paper ID
logger.info("SimpleDataCollator initialized - processing entries independently")
def __call__(self, features):
batch = {"input_ids": [], "attention_mask": [], "labels": []}
# Process each entry independently (no combining based on token size)
for example in features:
try:
# Get ID and conversation fields
paper_id = example.get("id", "") if isinstance(example, dict) else getattr(example, "id", "")
conversation = example.get("conversations", []) if isinstance(example, dict) else getattr(example, "conversations", [])
# Skip empty entries
if not conversation:
self.stats["skipped"] += 1
continue
# Increment global prompt counter
self.prompt_counter += 1
# Track prompts per paper
if paper_id not in self.paper_counters:
self.paper_counters[paper_id] = 0
self.paper_counters[paper_id] += 1
# Create a formatted prompt with tracking information
full_content = f"Prompt #{self.prompt_counter} | Paper ID: {paper_id} | Paper Chunk: {self.paper_counters[paper_id]}\n\n"
for message in conversation:
# Extract role and content
if isinstance(message, dict):
role = message.get("role", "")
content = message.get("content", "")
else:
role = getattr(message, "role", "")
content = getattr(message, "content", "")
# Add role and content to the full content
full_content += f"{role}: {content}\n\n"
# Tokenize the full content
input_ids = self.tokenizer.encode(full_content, add_special_tokens=True)
attention_mask = [1] * len(input_ids)
# Truncate if necessary
max_length = config.get("max_seq_length", 2048)
if len(input_ids) > max_length:
input_ids = input_ids[:max_length]
attention_mask = attention_mask[:max_length]
# Only add to batch if we have data
if len(input_ids) > 0:
# For content understanding, use the same tokens as labels
labels = input_ids.copy()
batch["input_ids"].append(input_ids)
batch["attention_mask"].append(attention_mask)
batch["labels"].append(labels)
self.stats["processed"] += 1
self.stats["total_tokens"] += len(input_ids)
# Debug logging for the first few examples
if self.stats["processed"] <= 3:
logger.info(f"Example {self.stats['processed']} - Prompt #{self.prompt_counter} | Paper ID: {paper_id} | Paper Chunk: {self.paper_counters[paper_id]}")
logger.info(f"Token count: {len(input_ids)}")
if len(input_ids) < 50: # Catch potentially short sequences
logger.info(f"WARNING: Short token sequence: {len(input_ids)} tokens")
logger.info(f"Content preview: {full_content[:200]}...")
else:
self.stats["skipped"] += 1
except Exception as e:
logger.warning(f"Error processing example: {str(e)[:100]}...")
self.stats["skipped"] += 1
continue
# Pad the batch
if not batch["input_ids"]:
logger.warning("Empty batch, returning dummy tensors")
return {
"input_ids": torch.zeros((1, 1), dtype=torch.long),
"attention_mask": torch.zeros((1, 1), dtype=torch.long),
"labels": torch.zeros((1, 1), dtype=torch.long)
}
max_length = max(len(ids) for ids in batch["input_ids"])
# Pad all sequences to max_length
for i in range(len(batch["input_ids"])):
padding_length = max_length - len(batch["input_ids"][i])
if padding_length > 0:
batch["input_ids"][i].extend([self.pad_token_id] * padding_length)
batch["attention_mask"][i].extend([0] * padding_length)
batch["labels"][i].extend([-100] * padding_length) # Don't compute loss on padding
# Convert to tensors
batch = {k: torch.tensor(v) for k, v in batch.items()}
# Log stats periodically (every 100 batches)
if self.stats["processed"] % 100 == 0 and self.stats["processed"] > 0:
logger.info(f"Data collator stats: processed={self.stats['processed']}, "
f"skipped={self.stats['skipped']}, "
f"avg_tokens={self.stats['total_tokens']/self.stats['processed']:.1f}, "
f"unique_papers={len(self.paper_counters)}")
return batch
# Create data collator
data_collator = SimpleDataCollator(tokenizer)
# Simple logging callback
class LoggingCallback(TrainerCallback):
def __init__(self):
self.last_log_time = datetime.now()
self.training_start_time = datetime.now()
def on_step_end(self, args, state, control, **kwargs):
# Log every 50 steps or every 5 minutes, whichever comes first
current_time = datetime.now()
time_diff = (current_time - self.last_log_time).total_seconds()
elapsed_time = (current_time - self.training_start_time).total_seconds() / 60 # in minutes
if state.global_step % 50 == 0 or time_diff > 300: # 300 seconds = 5 minutes
loss = state.log_history[-1]['loss'] if state.log_history else 'N/A'
lr = state.log_history[-1]['learning_rate'] if state.log_history else 'N/A'
if isinstance(loss, float):
loss_str = f"{loss:.4f}"
else:
loss_str = str(loss)
if isinstance(lr, float):
lr_str = f"{lr:.8f}"
else:
lr_str = str(lr)
logger.info(f"Step: {state.global_step} | Loss: {loss_str} | LR: {lr_str} | Elapsed: {elapsed_time:.2f} min")
self.last_log_time = current_time
# Set up training arguments
logger.info("Setting up training arguments")
training_args = TrainingArguments(
output_dir=config.get("output_dir", "./results"),
num_train_epochs=config.get("num_train_epochs", 3),
per_device_train_batch_size=config.get("per_device_train_batch_size", 4), # Use config value, can be > 1
gradient_accumulation_steps=config.get("gradient_accumulation_steps", 8),
learning_rate=config.get("learning_rate", 5e-5),
weight_decay=config.get("weight_decay", 0.01),
warmup_ratio=config.get("warmup_ratio", 0.1),
lr_scheduler_type=config.get("lr_scheduler_type", "linear"),
logging_steps=config.get("logging_steps", 10),
save_strategy=config.get("save_strategy", "steps"), # Updated to use steps by default
save_steps=config.get("save_steps", 100), # Save every 100 steps by default
save_total_limit=config.get("save_total_limit", 3), # Keep last 3 checkpoints
fp16=config.get("fp16", True),
bf16=config.get("bf16", False),
max_grad_norm=config.get("max_grad_norm", 1.0),
push_to_hub=config.get("push_to_hub", False),
hub_model_id=config.get("hub_model_id", None),
hub_token=os.environ.get("HF_TOKEN", None),
report_to="tensorboard",
remove_unused_columns=False, # Keep the conversations column
gradient_checkpointing=True, # Enable gradient checkpointing
dataloader_pin_memory=False, # Reduce memory usage
optim=config.get("optim", "adamw_torch"),
ddp_find_unused_parameters=False, # Improve distributed training efficiency
dataloader_drop_last=False, # Process all examples
dataloader_num_workers=0, # Sequential data loading
)
# Create a sequential sampler to ensure dataset is processed in order
logger.info("Creating sequential sampler to maintain dataset order")
# Create trainer with callback
logger.info("Creating trainer")
# Check if we should resume from checkpoint
resume_from_checkpoint = False
output_dir = config.get("output_dir", "./results")
if os.path.exists(output_dir):
checkpoints = [folder for folder in os.listdir(output_dir) if folder.startswith("checkpoint-")]
if checkpoints:
latest_checkpoint = max(checkpoints, key=lambda x: int(x.split("-")[1]))
resume_from_checkpoint = os.path.join(output_dir, latest_checkpoint)
logger.info(f"Found checkpoint: {resume_from_checkpoint}. Training will resume from this point.")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
data_collator=data_collator,
callbacks=[LoggingCallback()]
)
# Override the default data loader to disable shuffling
# This is necessary because TrainingArguments doesn't have a direct shuffle parameter
def get_train_dataloader_no_shuffle():
"""Create a train DataLoader with shuffling disabled."""
logger.info("Creating train dataloader with sequential sampler (no shuffling)")
# Create a sequential sampler to ensure dataset is processed in order
train_sampler = torch.utils.data.SequentialSampler(dataset["train"])
return torch.utils.data.DataLoader(
dataset["train"],
batch_size=training_args.per_device_train_batch_size,
sampler=train_sampler, # Use sequential sampler instead of shuffle parameter
collate_fn=data_collator,
drop_last=False,
num_workers=0,
pin_memory=False
)
# Replace the default data loader with our non-shuffling version
trainer.get_train_dataloader = get_train_dataloader_no_shuffle
# Start training
logger.info("Starting training")
logger.info(f"Processing with batch size = {training_args.per_device_train_batch_size}, each entry processed independently")
# Create a lock file to indicate training is in progress
lock_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "TRAINING_IN_PROGRESS.lock")
with open(lock_file, "w") as f:
f.write(f"Training started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"Expected completion: After {training_args.num_train_epochs} epochs\n")
f.write("DO NOT UPDATE OR RESTART THIS SPACE UNTIL TRAINING COMPLETES\n")
logger.info(f"Created lock file: {lock_file}")
try:
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
logger.info("Training completed successfully")
# Save model
if config.get("push_to_hub", False):
logger.info(f"Pushing model to hub: {config.get('hub_model_id')}")
trainer.push_to_hub()
logger.info("Model pushed to hub successfully")
else:
logger.info(f"Saving model to {config.get('output_dir', './results')}")
trainer.save_model()
logger.info("Model saved successfully")
except Exception as e:
logger.error(f"Training failed with error: {str(e)}")
raise
finally:
# Remove the lock file when training completes or fails
if os.path.exists(lock_file):
os.remove(lock_file)
logger.info(f"Removed lock file: {lock_file}")
return 0
if __name__ == "__main__":
sys.exit(main())
|