File size: 23,371 Bytes
467f05c
 
 
 
 
 
 
b571ee2
467f05c
 
 
 
 
 
 
 
 
 
 
 
3e18b42
467f05c
 
 
 
 
3e18b42
 
 
467f05c
 
 
 
b571ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e18b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e18b42
 
 
 
 
467f05c
 
 
 
3e18b42
 
 
 
 
 
 
 
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e18b42
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e18b42
 
 
 
 
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b571ee2
467f05c
b571ee2
 
 
467f05c
 
b571ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b571ee2
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
b571ee2
467f05c
b571ee2
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b571ee2
 
467f05c
 
 
 
 
 
 
 
 
 
 
b571ee2
467f05c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e18b42
 
 
 
 
 
 
 
 
 
467f05c
 
 
 
 
 
 
 
 
 
3e18b42
467f05c
 
 
3e18b42
 
 
 
 
 
467f05c
 
 
 
3e18b42
 
 
 
 
 
 
 
467f05c
3e18b42
 
 
467f05c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#!/usr/bin/env python

"""

Simplified fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit

- Optimized for L40S GPU

- Works with pre-tokenized datasets

- Research training only (no inference)

- Added CPU fallback support for Hugging Face Spaces

"""

import os
import logging
import json
import torch
import argparse
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, AutoConfig, BitsAndBytesConfig
from transformers.data.data_collator import DataCollatorMixin
from peft import LoraConfig, get_peft_model
from dotenv import load_dotenv
from huggingface_hub import HfApi, upload_folder

# Basic environment setup for L40S
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:256"
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"

# Default dataset with proper namespace
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Check if CUDA is available for bitsandbytes
def is_bnb_available():
    """Check if bitsandbytes with CUDA is available"""
    try:
        import bitsandbytes as bnb
        if torch.cuda.is_available():
            # Try to create a dummy 4-bit tensor to see if it works
            try:
                _ = torch.zeros(1, dtype=torch.float16, device="cuda").to(bnb.nn.Linear4bit)
                logger.info("BitsAndBytes with CUDA support is available")
                return True
            except Exception as e:
                logger.warning(f"CUDA available but bitsandbytes test failed: {e}")
                return False
        else:
            logger.warning("CUDA not available for bitsandbytes")
            return False
    except (ImportError, RuntimeError) as e:
        logger.warning(f"Error checking bitsandbytes: {e}")
        return False

# Create a marker file to indicate training is active
def create_training_marker(output_dir):
    os.makedirs(output_dir, exist_ok=True)
    with open("TRAINING_ACTIVE", "w") as f:
        f.write(f"Training active in {output_dir}")
    
    with open(os.path.join(output_dir, "RESEARCH_TRAINING_ONLY"), "w") as f:
        f.write("This model is for research training only. No interactive outputs.")

# Remove the training marker file
def remove_training_marker():
    if os.path.exists("TRAINING_ACTIVE"):
        os.remove("TRAINING_ACTIVE")
        logger.info("Removed training active marker")

# Function to upload model to Hugging Face Hub
def upload_to_huggingface(output_dir, repo_name=None, private=False):
    """

    Upload the trained model to Hugging Face Hub

    

    Args:

        output_dir: Directory containing the model files

        repo_name: Name of the repository on HF Hub (default: derived from output_dir)

        private: Whether the repository should be private (default: False)

    

    Returns:

        str: URL of the uploaded model on HF Hub

    """
    logger.info(f"Uploading model from {output_dir} to Hugging Face Hub")
    
    # Get HF token from environment
    token = os.environ.get("HF_TOKEN")
    if not token:
        logger.error("HF_TOKEN environment variable not set. Please set it to upload to Hugging Face Hub.")
        logger.error("You can get a token from https://huggingface.co/settings/tokens")
        raise ValueError("HF_TOKEN not set")
    
    # Get or create repo name
    if not repo_name:
        # Use the output directory name as the repository name
        repo_name = os.path.basename(os.path.normpath(output_dir))
        logger.info(f"Using repository name: {repo_name}")
    
    # Get HF username
    api = HfApi(token=token)
    user_info = api.whoami()
    username = user_info["name"]
    
    # Create full repository name
    full_repo_name = f"{username}/{repo_name}"
    logger.info(f"Creating repository: {full_repo_name}")
    
    # Create repository if it doesn't exist
    api.create_repo(
        repo_id=full_repo_name,
        exist_ok=True,
        private=private
    )
    
    # Upload model files
    logger.info(f"Uploading files from {output_dir} to {full_repo_name}")
    api.upload_folder(
        folder_path=output_dir,
        repo_id=full_repo_name,
        commit_message="Upload model files"
    )
    
    # Create model card
    model_card = f"""

# {repo_name}



This model was fine-tuned using the script at https://github.com/George-API/phi4-cognitive-dataset.



## Model details

- Base model: DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit

- Dataset: {DEFAULT_DATASET}

- Training: Research only

    """
    
    with open(os.path.join(output_dir, "README.md"), "w") as f:
        f.write(model_card)
    
    # Upload the model card
    api.upload_file(
        path_or_fileobj=os.path.join(output_dir, "README.md"),
        path_in_repo="README.md",
        repo_id=full_repo_name,
        commit_message="Add model card"
    )
    
    logger.info(f"Model successfully uploaded to https://huggingface.co/{full_repo_name}")
    return f"https://huggingface.co/{full_repo_name}"

# Custom data collator for pre-tokenized data
class PreTokenizedCollator(DataCollatorMixin):
    def __init__(self, pad_token_id=0, tokenizer=None):
        self.pad_token_id = pad_token_id
        self.tokenizer = tokenizer  # Keep reference to tokenizer for fallback
        
    def __call__(self, features):
        # Extract features properly from the batch
        processed_features = []
        for feature in features:
            # If input_ids is directly available, use it
            if 'input_ids' in feature and isinstance(feature['input_ids'], list):
                processed_features.append(feature)
                continue
                
            # If input_ids is not available, try to extract from conversations
            if 'input_ids' not in feature and 'conversations' in feature:
                conversations = feature['conversations']
                
                if isinstance(conversations, list) and len(conversations) > 0:
                    # Case 1: If conversations has 'input_ids' field (pre-tokenized)
                    if isinstance(conversations[0], dict) and 'input_ids' in conversations[0]:
                        feature['input_ids'] = conversations[0]['input_ids']
                    
                    # Case 2: If conversations itself contains input_ids
                    elif all(isinstance(x, int) for x in conversations):
                        feature['input_ids'] = conversations
                    
                    # Case 3: If conversations has 'content' field
                    elif isinstance(conversations[0], dict) and 'content' in conversations[0]:
                        content = conversations[0]['content']
                        
                        # If content is already tokens, use directly
                        if isinstance(content, list) and all(isinstance(x, int) for x in content):
                            feature['input_ids'] = content
                        # If content is a string and we have tokenizer, tokenize as fallback
                        elif isinstance(content, str) and self.tokenizer:
                            logger.warning("Tokenizing string content as fallback")
                            feature['input_ids'] = self.tokenizer.encode(content, add_special_tokens=False)
            
            # Ensure input_ids is present and is a list of integers
            if 'input_ids' in feature:
                if isinstance(feature['input_ids'], str) and self.tokenizer:
                    feature['input_ids'] = self.tokenizer.encode(feature['input_ids'], add_special_tokens=False)
                elif not isinstance(feature['input_ids'], list):
                    try:
                        feature['input_ids'] = list(feature['input_ids'])
                    except Exception as e:
                        logger.error(f"Could not convert input_ids to list: {e}")
                        continue
                
                processed_features.append(feature)
        
        if len(processed_features) == 0:
            raise ValueError("No valid examples found. Check dataset structure.")
            
        # Determine max length in this batch
        batch_max_len = max(len(x["input_ids"]) for x in processed_features)
        
        # Initialize batch tensors
        batch = {
            "input_ids": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * self.pad_token_id,
            "attention_mask": torch.zeros((len(processed_features), batch_max_len), dtype=torch.long),
            "labels": torch.ones((len(processed_features), batch_max_len), dtype=torch.long) * -100  # -100 is ignored in loss
        }
        
        # Fill batch tensors
        for i, feature in enumerate(processed_features):
            input_ids = feature["input_ids"]
            seq_len = len(input_ids)
            
            # Convert to tensor if it's a list
            if isinstance(input_ids, list):
                input_ids = torch.tensor(input_ids, dtype=torch.long)
                
            # Copy data to batch tensors
            batch["input_ids"][i, :seq_len] = input_ids
            batch["attention_mask"][i, :seq_len] = 1
            
            # If there are labels, use them, otherwise use input_ids
            if "labels" in feature:
                labels = feature["labels"]
                if isinstance(labels, list):
                    labels = torch.tensor(labels, dtype=torch.long)
                batch["labels"][i, :len(labels)] = labels
            else:
                batch["labels"][i, :seq_len] = input_ids
        
        return batch

# Load and prepare dataset with proper sorting
def load_and_prepare_dataset(dataset_name, config):
    """Load and prepare the dataset for fine-tuning with proper sorting"""
    # Use the default dataset if the provided one matches the default name without namespace
    if dataset_name == "phi4-cognitive-dataset":
        dataset_name = DEFAULT_DATASET
        logger.info(f"Using full dataset path: {dataset_name}")
    
    logger.info(f"Loading dataset: {dataset_name}")
    
    try:
        # Load dataset
        try:
            dataset = load_dataset(dataset_name)
        except Exception as e:
            if "doesn't exist on the Hub or cannot be accessed" in str(e):
                logger.error(f"Dataset '{dataset_name}' not found. Make sure it exists and is accessible.")
                logger.error(f"If using a private dataset, check your HF_TOKEN is set in your environment.")
                logger.error(f"If missing namespace, try using the full path: 'George-API/phi4-cognitive-dataset'")
            raise
        
        # Extract the split we want to use (usually 'train')
        if 'train' in dataset:
            dataset = dataset['train']
        
        # Get the dataset config
        dataset_config = config.get("dataset_config", {})
        sort_field = dataset_config.get("sort_by_field", "prompt_number")
        
        # Sort in ascending order by specified field
        logger.info(f"Sorting dataset by {sort_field} in ascending order")
        dataset = dataset.sort(sort_field)
        
        # Print dataset info
        logger.info(f"Dataset loaded with {len(dataset)} entries")
        logger.info(f"Dataset columns: {dataset.column_names}")
        
        # Print sample for debugging
        if len(dataset) > 0:
            logger.info(f"Sample entry structure: {list(dataset[0].keys())}")
        
        return dataset
    
    except Exception as e:
        logger.error(f"Error loading dataset: {str(e)}")
        raise

# Main training function
def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_name=None, private_repo=False):
    # Load environment variables
    load_dotenv()
    
    # Load config
    with open(config_path, 'r') as f:
        config = json.load(f)
    
    # Create training marker
    create_training_marker(output_dir)
    
    try:
        # Extract configs
        model_config = config.get("model_config", {})
        training_config = config.get("training_config", {})
        hardware_config = config.get("hardware_config", {})
        lora_config = config.get("lora_config", {})
        dataset_config = config.get("dataset_config", {})
        
        # Log dataset info before loading
        logger.info(f"Will load dataset: {dataset_name}")
        if dataset_name != DEFAULT_DATASET and "phi4-cognitive-dataset" in dataset_name:
            logger.warning(f"Dataset name may need namespace prefix. Current: {dataset_name}")
        
        # Load and prepare dataset with proper sorting
        dataset = load_and_prepare_dataset(dataset_name, config)
        
        # Load model settings
        model_name = model_config.get("model_name_or_path")
        logger.info(f"Using model: {model_name}")
        
        # Initialize tokenizer
        logger.info("Loading tokenizer")
        tokenizer = AutoTokenizer.from_pretrained(
            model_name, 
            trust_remote_code=True
        )
        tokenizer.pad_token = tokenizer.eos_token
        
        # Get quantization config
        quant_config = config.get("quantization_config", {})
        
        # Check if bitsandbytes with CUDA is available
        use_4bit = is_bnb_available() and quant_config.get("load_in_4bit", True)
        
        # Create model with proper configuration
        logger.info(f"Loading model (4-bit quantization: {use_4bit})")
        
        if use_4bit:
            # Create quantization config for GPU
            bnb_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=torch.float16,
                bnb_4bit_quant_type=quant_config.get("bnb_4bit_quant_type", "nf4"),
                bnb_4bit_use_double_quant=quant_config.get("bnb_4bit_use_double_quant", True)
            )
            
            # Load 4-bit quantized model for GPU
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                quantization_config=bnb_config,
                device_map="auto",
                torch_dtype=torch.float16,
                trust_remote_code=True,
                use_cache=model_config.get("use_cache", False),
                attn_implementation=hardware_config.get("attn_implementation", "eager")
            )
        else:
            # CPU fallback (or non-quantized GPU) mode
            logger.warning("Loading model in CPU fallback mode (no 4-bit quantization)")
            
            # Determine best dtype based on available hardware
            if torch.cuda.is_available():
                dtype = torch.float16
                device_map = "auto"
                logger.info("Using GPU with fp16")
            else:
                dtype = torch.float32
                device_map = "cpu"
                logger.info("Using CPU with fp32")
            
            # Load model without quantization
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                device_map=device_map,
                torch_dtype=dtype,
                trust_remote_code=True,
                use_cache=model_config.get("use_cache", False),
                low_cpu_mem_usage=True
            )
        
        # Apply rope scaling if configured
        if "rope_scaling" in model_config:
            logger.info(f"Applying rope scaling: {model_config['rope_scaling']}")
            if hasattr(model.config, "rope_scaling"):
                model.config.rope_scaling = model_config["rope_scaling"]
        
        # Create LoRA config
        logger.info("Creating LoRA configuration")
        lora_config_obj = LoraConfig(
            r=lora_config.get("r", 16),
            lora_alpha=lora_config.get("lora_alpha", 32),
            lora_dropout=lora_config.get("lora_dropout", 0.05),
            bias=lora_config.get("bias", "none"),
            target_modules=lora_config.get("target_modules", ["q_proj", "k_proj", "v_proj", "o_proj"])
        )
        
        # Apply LoRA to model
        logger.info("Applying LoRA to model")
        model = get_peft_model(model, lora_config_obj)
        logger.info("Successfully applied LoRA")
        
        # Determine batch size based on available hardware
        if torch.cuda.is_available():
            gpu_info = torch.cuda.get_device_properties(0)
            logger.info(f"GPU: {gpu_info.name}, VRAM: {gpu_info.total_memory / 1e9:.2f} GB")
            
            # Check if it's an L40S or high-memory GPU
            if "L40S" in gpu_info.name or gpu_info.total_memory > 40e9:
                logger.info("Detected L40S GPU - optimizing for high-memory GPU")
                per_device_train_batch_size = training_config.get("per_device_train_batch_size", 4)
            else:
                # Use a smaller batch size for other GPUs
                per_device_train_batch_size = 2
                logger.info(f"Using conservative batch size for non-L40S GPU: {per_device_train_batch_size}")
        else:
            # Use minimal batch size for CPU
            per_device_train_batch_size = 1
            logger.warning("No GPU detected - using minimal batch size for CPU training")
        
        # Configure reporting backends
        reports = training_config.get("report_to", ["tensorboard"])
        
        # Create training arguments
        logger.info("Creating training arguments")
        training_args = TrainingArguments(
            output_dir=output_dir,
            num_train_epochs=training_config.get("num_train_epochs", 3),
            per_device_train_batch_size=per_device_train_batch_size,
            gradient_accumulation_steps=training_config.get("gradient_accumulation_steps", 4),
            learning_rate=training_config.get("learning_rate", 2e-5),
            lr_scheduler_type=training_config.get("lr_scheduler_type", "cosine"),
            warmup_ratio=training_config.get("warmup_ratio", 0.03),
            weight_decay=training_config.get("weight_decay", 0.01),
            optim=training_config.get("optim", "adamw_torch"),
            fp16=torch.cuda.is_available() and hardware_config.get("fp16", True),
            bf16=torch.cuda.is_available() and hardware_config.get("bf16", False),
            max_grad_norm=training_config.get("max_grad_norm", 0.3),
            logging_steps=training_config.get("logging_steps", 10),
            save_steps=training_config.get("save_steps", 200),
            save_total_limit=training_config.get("save_total_limit", 3),
            evaluation_strategy=training_config.get("evaluation_strategy", "steps"),
            eval_steps=training_config.get("eval_steps", 200),
            load_best_model_at_end=training_config.get("load_best_model_at_end", True),
            report_to=reports,
            logging_first_step=training_config.get("logging_first_step", True),
            disable_tqdm=training_config.get("disable_tqdm", False),
            remove_unused_columns=False,
            gradient_checkpointing=torch.cuda.is_available() and hardware_config.get("gradient_checkpointing", True),
            dataloader_num_workers=training_config.get("dataloader_num_workers", 4)
        )
        
        # Create trainer with pre-tokenized collator
        logger.info("Creating trainer with pre-tokenized collator")
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=dataset,
            data_collator=PreTokenizedCollator(
                pad_token_id=tokenizer.pad_token_id, 
                tokenizer=tokenizer
            ),
        )
        
        # Start training
        logger.info("Starting training - RESEARCH PHASE ONLY")
        trainer.train()
        
        # Save the model
        logger.info(f"Saving model to {output_dir}")
        trainer.save_model(output_dir)
        
        # Save LoRA adapter separately
        lora_output_dir = os.path.join(output_dir, "lora_adapter")
        model.save_pretrained(lora_output_dir)
        logger.info(f"Saved LoRA adapter to {lora_output_dir}")
        
        # Save tokenizer
        tokenizer_output_dir = os.path.join(output_dir, "tokenizer")
        tokenizer.save_pretrained(tokenizer_output_dir)
        logger.info(f"Saved tokenizer to {tokenizer_output_dir}")
        
        # Save config for reference
        with open(os.path.join(output_dir, "training_config.json"), "w") as f:
            json.dump(config, f, indent=2)
        
        logger.info("Training complete - RESEARCH PHASE ONLY")
        
        # Upload to Hugging Face Hub if requested
        if upload_to_hub:
            hub_url = upload_to_huggingface(
                output_dir=output_dir,
                repo_name=hub_repo_name,
                private=private_repo
            )
            logger.info(f"Model uploaded to Hugging Face Hub: {hub_url}")
        
        return output_dir
    
    finally:
        # Always remove the training marker when done
        remove_training_marker()

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Fine-tune DeepSeek model (Research Only)")
    parser.add_argument("--config", type=str, default="transformers_config.json", 
                      help="Path to the configuration file")
    parser.add_argument("--dataset", type=str, default=DEFAULT_DATASET, 
                      help="Dataset name or path")
    parser.add_argument("--output_dir", type=str, default="fine_tuned_model", 
                      help="Output directory for the fine-tuned model")
    parser.add_argument("--upload_to_hub", action="store_true",
                      help="Upload the model to Hugging Face Hub after training")
    parser.add_argument("--hub_repo_name", type=str, default=None,
                      help="Repository name for the model on Hugging Face Hub")
    parser.add_argument("--private_repo", action="store_true",
                      help="Make the Hugging Face Hub repository private")
    
    args = parser.parse_args()
    
    try:
        output_path = train(
            args.config, 
            args.dataset, 
            args.output_dir,
            upload_to_hub=args.upload_to_hub,
            hub_repo_name=args.hub_repo_name,
            private_repo=args.private_repo
        )
        print(f"Research training completed. Model saved to: {output_path}")
        
        if args.upload_to_hub:
            print("Model was also uploaded to Hugging Face Hub.")
    except Exception as e:
        logging.error(f"Training failed: {str(e)}")
        remove_training_marker()  # Clean up marker if training fails
        raise