Spaces:
Sleeping
Sleeping
Upload run_cloud_training.py with huggingface_hub
Browse files- run_cloud_training.py +76 -22
run_cloud_training.py
CHANGED
@@ -5,6 +5,7 @@ Simplified fine-tuning script for DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit
|
|
5 |
- Optimized for L40S GPU
|
6 |
- Works with pre-tokenized datasets
|
7 |
- Research training only (no inference)
|
|
|
8 |
"""
|
9 |
|
10 |
import os
|
@@ -30,6 +31,27 @@ DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"
|
|
30 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
31 |
logger = logging.getLogger(__name__)
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Create a marker file to indicate training is active
|
34 |
def create_training_marker(output_dir):
|
35 |
os.makedirs(output_dir, exist_ok=True)
|
@@ -300,26 +322,57 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
300 |
)
|
301 |
tokenizer.pad_token = tokenizer.eos_token
|
302 |
|
303 |
-
#
|
304 |
quant_config = config.get("quantization_config", {})
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
bnb_4bit_quant_type=quant_config.get("bnb_4bit_quant_type", "nf4"),
|
309 |
-
bnb_4bit_use_double_quant=quant_config.get("bnb_4bit_use_double_quant", True)
|
310 |
-
)
|
311 |
|
312 |
# Create model with proper configuration
|
313 |
-
logger.info("Loading
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
# Apply rope scaling if configured
|
325 |
if "rope_scaling" in model_config:
|
@@ -342,7 +395,7 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
342 |
model = get_peft_model(model, lora_config_obj)
|
343 |
logger.info("Successfully applied LoRA")
|
344 |
|
345 |
-
#
|
346 |
if torch.cuda.is_available():
|
347 |
gpu_info = torch.cuda.get_device_properties(0)
|
348 |
logger.info(f"GPU: {gpu_info.name}, VRAM: {gpu_info.total_memory / 1e9:.2f} GB")
|
@@ -356,8 +409,9 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
356 |
per_device_train_batch_size = 2
|
357 |
logger.info(f"Using conservative batch size for non-L40S GPU: {per_device_train_batch_size}")
|
358 |
else:
|
|
|
359 |
per_device_train_batch_size = 1
|
360 |
-
logger.warning("No GPU detected - using minimal batch size")
|
361 |
|
362 |
# Configure reporting backends
|
363 |
reports = training_config.get("report_to", ["tensorboard"])
|
@@ -374,8 +428,8 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
374 |
warmup_ratio=training_config.get("warmup_ratio", 0.03),
|
375 |
weight_decay=training_config.get("weight_decay", 0.01),
|
376 |
optim=training_config.get("optim", "adamw_torch"),
|
377 |
-
fp16=hardware_config.get("fp16", True),
|
378 |
-
bf16=hardware_config.get("bf16", False),
|
379 |
max_grad_norm=training_config.get("max_grad_norm", 0.3),
|
380 |
logging_steps=training_config.get("logging_steps", 10),
|
381 |
save_steps=training_config.get("save_steps", 200),
|
@@ -387,7 +441,7 @@ def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_n
|
|
387 |
logging_first_step=training_config.get("logging_first_step", True),
|
388 |
disable_tqdm=training_config.get("disable_tqdm", False),
|
389 |
remove_unused_columns=False,
|
390 |
-
gradient_checkpointing=hardware_config.get("gradient_checkpointing", True),
|
391 |
dataloader_num_workers=training_config.get("dataloader_num_workers", 4)
|
392 |
)
|
393 |
|
|
|
5 |
- Optimized for L40S GPU
|
6 |
- Works with pre-tokenized datasets
|
7 |
- Research training only (no inference)
|
8 |
+
- Added CPU fallback support for Hugging Face Spaces
|
9 |
"""
|
10 |
|
11 |
import os
|
|
|
31 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
32 |
logger = logging.getLogger(__name__)
|
33 |
|
34 |
+
# Check if CUDA is available for bitsandbytes
|
35 |
+
def is_bnb_available():
|
36 |
+
"""Check if bitsandbytes with CUDA is available"""
|
37 |
+
try:
|
38 |
+
import bitsandbytes as bnb
|
39 |
+
if torch.cuda.is_available():
|
40 |
+
# Try to create a dummy 4-bit tensor to see if it works
|
41 |
+
try:
|
42 |
+
_ = torch.zeros(1, dtype=torch.float16, device="cuda").to(bnb.nn.Linear4bit)
|
43 |
+
logger.info("BitsAndBytes with CUDA support is available")
|
44 |
+
return True
|
45 |
+
except Exception as e:
|
46 |
+
logger.warning(f"CUDA available but bitsandbytes test failed: {e}")
|
47 |
+
return False
|
48 |
+
else:
|
49 |
+
logger.warning("CUDA not available for bitsandbytes")
|
50 |
+
return False
|
51 |
+
except (ImportError, RuntimeError) as e:
|
52 |
+
logger.warning(f"Error checking bitsandbytes: {e}")
|
53 |
+
return False
|
54 |
+
|
55 |
# Create a marker file to indicate training is active
|
56 |
def create_training_marker(output_dir):
|
57 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
322 |
)
|
323 |
tokenizer.pad_token = tokenizer.eos_token
|
324 |
|
325 |
+
# Get quantization config
|
326 |
quant_config = config.get("quantization_config", {})
|
327 |
+
|
328 |
+
# Check if bitsandbytes with CUDA is available
|
329 |
+
use_4bit = is_bnb_available() and quant_config.get("load_in_4bit", True)
|
|
|
|
|
|
|
330 |
|
331 |
# Create model with proper configuration
|
332 |
+
logger.info(f"Loading model (4-bit quantization: {use_4bit})")
|
333 |
+
|
334 |
+
if use_4bit:
|
335 |
+
# Create quantization config for GPU
|
336 |
+
bnb_config = BitsAndBytesConfig(
|
337 |
+
load_in_4bit=True,
|
338 |
+
bnb_4bit_compute_dtype=torch.float16,
|
339 |
+
bnb_4bit_quant_type=quant_config.get("bnb_4bit_quant_type", "nf4"),
|
340 |
+
bnb_4bit_use_double_quant=quant_config.get("bnb_4bit_use_double_quant", True)
|
341 |
+
)
|
342 |
+
|
343 |
+
# Load 4-bit quantized model for GPU
|
344 |
+
model = AutoModelForCausalLM.from_pretrained(
|
345 |
+
model_name,
|
346 |
+
quantization_config=bnb_config,
|
347 |
+
device_map="auto",
|
348 |
+
torch_dtype=torch.float16,
|
349 |
+
trust_remote_code=True,
|
350 |
+
use_cache=model_config.get("use_cache", False),
|
351 |
+
attn_implementation=hardware_config.get("attn_implementation", "eager")
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
# CPU fallback (or non-quantized GPU) mode
|
355 |
+
logger.warning("Loading model in CPU fallback mode (no 4-bit quantization)")
|
356 |
+
|
357 |
+
# Determine best dtype based on available hardware
|
358 |
+
if torch.cuda.is_available():
|
359 |
+
dtype = torch.float16
|
360 |
+
device_map = "auto"
|
361 |
+
logger.info("Using GPU with fp16")
|
362 |
+
else:
|
363 |
+
dtype = torch.float32
|
364 |
+
device_map = "cpu"
|
365 |
+
logger.info("Using CPU with fp32")
|
366 |
+
|
367 |
+
# Load model without quantization
|
368 |
+
model = AutoModelForCausalLM.from_pretrained(
|
369 |
+
model_name,
|
370 |
+
device_map=device_map,
|
371 |
+
torch_dtype=dtype,
|
372 |
+
trust_remote_code=True,
|
373 |
+
use_cache=model_config.get("use_cache", False),
|
374 |
+
low_cpu_mem_usage=True
|
375 |
+
)
|
376 |
|
377 |
# Apply rope scaling if configured
|
378 |
if "rope_scaling" in model_config:
|
|
|
395 |
model = get_peft_model(model, lora_config_obj)
|
396 |
logger.info("Successfully applied LoRA")
|
397 |
|
398 |
+
# Determine batch size based on available hardware
|
399 |
if torch.cuda.is_available():
|
400 |
gpu_info = torch.cuda.get_device_properties(0)
|
401 |
logger.info(f"GPU: {gpu_info.name}, VRAM: {gpu_info.total_memory / 1e9:.2f} GB")
|
|
|
409 |
per_device_train_batch_size = 2
|
410 |
logger.info(f"Using conservative batch size for non-L40S GPU: {per_device_train_batch_size}")
|
411 |
else:
|
412 |
+
# Use minimal batch size for CPU
|
413 |
per_device_train_batch_size = 1
|
414 |
+
logger.warning("No GPU detected - using minimal batch size for CPU training")
|
415 |
|
416 |
# Configure reporting backends
|
417 |
reports = training_config.get("report_to", ["tensorboard"])
|
|
|
428 |
warmup_ratio=training_config.get("warmup_ratio", 0.03),
|
429 |
weight_decay=training_config.get("weight_decay", 0.01),
|
430 |
optim=training_config.get("optim", "adamw_torch"),
|
431 |
+
fp16=torch.cuda.is_available() and hardware_config.get("fp16", True),
|
432 |
+
bf16=torch.cuda.is_available() and hardware_config.get("bf16", False),
|
433 |
max_grad_norm=training_config.get("max_grad_norm", 0.3),
|
434 |
logging_steps=training_config.get("logging_steps", 10),
|
435 |
save_steps=training_config.get("save_steps", 200),
|
|
|
441 |
logging_first_step=training_config.get("logging_first_step", True),
|
442 |
disable_tqdm=training_config.get("disable_tqdm", False),
|
443 |
remove_unused_columns=False,
|
444 |
+
gradient_checkpointing=torch.cuda.is_available() and hardware_config.get("gradient_checkpointing", True),
|
445 |
dataloader_num_workers=training_config.get("dataloader_num_workers", 4)
|
446 |
)
|
447 |
|