Spaces:
Sleeping
Sleeping
Upload run_cloud_training.py with huggingface_hub
Browse files- run_cloud_training.py +129 -4
run_cloud_training.py
CHANGED
@@ -17,11 +17,15 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments,
|
|
17 |
from transformers.data.data_collator import DataCollatorMixin
|
18 |
from peft import LoraConfig, get_peft_model
|
19 |
from dotenv import load_dotenv
|
|
|
20 |
|
21 |
# Basic environment setup for L40S
|
22 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:256"
|
23 |
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
|
24 |
|
|
|
|
|
|
|
25 |
# Set up logging
|
26 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
27 |
logger = logging.getLogger(__name__)
|
@@ -41,6 +45,84 @@ def remove_training_marker():
|
|
41 |
os.remove("TRAINING_ACTIVE")
|
42 |
logger.info("Removed training active marker")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Custom data collator for pre-tokenized data
|
45 |
class PreTokenizedCollator(DataCollatorMixin):
|
46 |
def __init__(self, pad_token_id=0, tokenizer=None):
|
@@ -134,11 +216,23 @@ class PreTokenizedCollator(DataCollatorMixin):
|
|
134 |
# Load and prepare dataset with proper sorting
|
135 |
def load_and_prepare_dataset(dataset_name, config):
|
136 |
"""Load and prepare the dataset for fine-tuning with proper sorting"""
|
|
|
|
|
|
|
|
|
|
|
137 |
logger.info(f"Loading dataset: {dataset_name}")
|
138 |
|
139 |
try:
|
140 |
# Load dataset
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
# Extract the split we want to use (usually 'train')
|
144 |
if 'train' in dataset:
|
@@ -167,7 +261,7 @@ def load_and_prepare_dataset(dataset_name, config):
|
|
167 |
raise
|
168 |
|
169 |
# Main training function
|
170 |
-
def train(config_path, dataset_name, output_dir):
|
171 |
# Load environment variables
|
172 |
load_dotenv()
|
173 |
|
@@ -186,6 +280,11 @@ def train(config_path, dataset_name, output_dir):
|
|
186 |
lora_config = config.get("lora_config", {})
|
187 |
dataset_config = config.get("dataset_config", {})
|
188 |
|
|
|
|
|
|
|
|
|
|
|
189 |
# Load and prepare dataset with proper sorting
|
190 |
dataset = load_and_prepare_dataset(dataset_name, config)
|
191 |
|
@@ -327,6 +426,16 @@ def train(config_path, dataset_name, output_dir):
|
|
327 |
json.dump(config, f, indent=2)
|
328 |
|
329 |
logger.info("Training complete - RESEARCH PHASE ONLY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
return output_dir
|
331 |
|
332 |
finally:
|
@@ -337,16 +446,32 @@ if __name__ == "__main__":
|
|
337 |
parser = argparse.ArgumentParser(description="Fine-tune DeepSeek model (Research Only)")
|
338 |
parser.add_argument("--config", type=str, default="transformers_config.json",
|
339 |
help="Path to the configuration file")
|
340 |
-
parser.add_argument("--dataset", type=str, default=
|
341 |
help="Dataset name or path")
|
342 |
parser.add_argument("--output_dir", type=str, default="fine_tuned_model",
|
343 |
help="Output directory for the fine-tuned model")
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
args = parser.parse_args()
|
346 |
|
347 |
try:
|
348 |
-
output_path = train(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
print(f"Research training completed. Model saved to: {output_path}")
|
|
|
|
|
|
|
350 |
except Exception as e:
|
351 |
logging.error(f"Training failed: {str(e)}")
|
352 |
remove_training_marker() # Clean up marker if training fails
|
|
|
17 |
from transformers.data.data_collator import DataCollatorMixin
|
18 |
from peft import LoraConfig, get_peft_model
|
19 |
from dotenv import load_dotenv
|
20 |
+
from huggingface_hub import HfApi, upload_folder
|
21 |
|
22 |
# Basic environment setup for L40S
|
23 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:256"
|
24 |
os.environ["TRANSFORMERS_NO_FLASH_ATTENTION"] = "1"
|
25 |
|
26 |
+
# Default dataset with proper namespace
|
27 |
+
DEFAULT_DATASET = "George-API/phi4-cognitive-dataset"
|
28 |
+
|
29 |
# Set up logging
|
30 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
31 |
logger = logging.getLogger(__name__)
|
|
|
45 |
os.remove("TRAINING_ACTIVE")
|
46 |
logger.info("Removed training active marker")
|
47 |
|
48 |
+
# Function to upload model to Hugging Face Hub
|
49 |
+
def upload_to_huggingface(output_dir, repo_name=None, private=False):
|
50 |
+
"""
|
51 |
+
Upload the trained model to Hugging Face Hub
|
52 |
+
|
53 |
+
Args:
|
54 |
+
output_dir: Directory containing the model files
|
55 |
+
repo_name: Name of the repository on HF Hub (default: derived from output_dir)
|
56 |
+
private: Whether the repository should be private (default: False)
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
str: URL of the uploaded model on HF Hub
|
60 |
+
"""
|
61 |
+
logger.info(f"Uploading model from {output_dir} to Hugging Face Hub")
|
62 |
+
|
63 |
+
# Get HF token from environment
|
64 |
+
token = os.environ.get("HF_TOKEN")
|
65 |
+
if not token:
|
66 |
+
logger.error("HF_TOKEN environment variable not set. Please set it to upload to Hugging Face Hub.")
|
67 |
+
logger.error("You can get a token from https://huggingface.co/settings/tokens")
|
68 |
+
raise ValueError("HF_TOKEN not set")
|
69 |
+
|
70 |
+
# Get or create repo name
|
71 |
+
if not repo_name:
|
72 |
+
# Use the output directory name as the repository name
|
73 |
+
repo_name = os.path.basename(os.path.normpath(output_dir))
|
74 |
+
logger.info(f"Using repository name: {repo_name}")
|
75 |
+
|
76 |
+
# Get HF username
|
77 |
+
api = HfApi(token=token)
|
78 |
+
user_info = api.whoami()
|
79 |
+
username = user_info["name"]
|
80 |
+
|
81 |
+
# Create full repository name
|
82 |
+
full_repo_name = f"{username}/{repo_name}"
|
83 |
+
logger.info(f"Creating repository: {full_repo_name}")
|
84 |
+
|
85 |
+
# Create repository if it doesn't exist
|
86 |
+
api.create_repo(
|
87 |
+
repo_id=full_repo_name,
|
88 |
+
exist_ok=True,
|
89 |
+
private=private
|
90 |
+
)
|
91 |
+
|
92 |
+
# Upload model files
|
93 |
+
logger.info(f"Uploading files from {output_dir} to {full_repo_name}")
|
94 |
+
api.upload_folder(
|
95 |
+
folder_path=output_dir,
|
96 |
+
repo_id=full_repo_name,
|
97 |
+
commit_message="Upload model files"
|
98 |
+
)
|
99 |
+
|
100 |
+
# Create model card
|
101 |
+
model_card = f"""
|
102 |
+
# {repo_name}
|
103 |
+
|
104 |
+
This model was fine-tuned using the script at https://github.com/George-API/phi4-cognitive-dataset.
|
105 |
+
|
106 |
+
## Model details
|
107 |
+
- Base model: DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit
|
108 |
+
- Dataset: {DEFAULT_DATASET}
|
109 |
+
- Training: Research only
|
110 |
+
"""
|
111 |
+
|
112 |
+
with open(os.path.join(output_dir, "README.md"), "w") as f:
|
113 |
+
f.write(model_card)
|
114 |
+
|
115 |
+
# Upload the model card
|
116 |
+
api.upload_file(
|
117 |
+
path_or_fileobj=os.path.join(output_dir, "README.md"),
|
118 |
+
path_in_repo="README.md",
|
119 |
+
repo_id=full_repo_name,
|
120 |
+
commit_message="Add model card"
|
121 |
+
)
|
122 |
+
|
123 |
+
logger.info(f"Model successfully uploaded to https://huggingface.co/{full_repo_name}")
|
124 |
+
return f"https://huggingface.co/{full_repo_name}"
|
125 |
+
|
126 |
# Custom data collator for pre-tokenized data
|
127 |
class PreTokenizedCollator(DataCollatorMixin):
|
128 |
def __init__(self, pad_token_id=0, tokenizer=None):
|
|
|
216 |
# Load and prepare dataset with proper sorting
|
217 |
def load_and_prepare_dataset(dataset_name, config):
|
218 |
"""Load and prepare the dataset for fine-tuning with proper sorting"""
|
219 |
+
# Use the default dataset if the provided one matches the default name without namespace
|
220 |
+
if dataset_name == "phi4-cognitive-dataset":
|
221 |
+
dataset_name = DEFAULT_DATASET
|
222 |
+
logger.info(f"Using full dataset path: {dataset_name}")
|
223 |
+
|
224 |
logger.info(f"Loading dataset: {dataset_name}")
|
225 |
|
226 |
try:
|
227 |
# Load dataset
|
228 |
+
try:
|
229 |
+
dataset = load_dataset(dataset_name)
|
230 |
+
except Exception as e:
|
231 |
+
if "doesn't exist on the Hub or cannot be accessed" in str(e):
|
232 |
+
logger.error(f"Dataset '{dataset_name}' not found. Make sure it exists and is accessible.")
|
233 |
+
logger.error(f"If using a private dataset, check your HF_TOKEN is set in your environment.")
|
234 |
+
logger.error(f"If missing namespace, try using the full path: 'George-API/phi4-cognitive-dataset'")
|
235 |
+
raise
|
236 |
|
237 |
# Extract the split we want to use (usually 'train')
|
238 |
if 'train' in dataset:
|
|
|
261 |
raise
|
262 |
|
263 |
# Main training function
|
264 |
+
def train(config_path, dataset_name, output_dir, upload_to_hub=False, hub_repo_name=None, private_repo=False):
|
265 |
# Load environment variables
|
266 |
load_dotenv()
|
267 |
|
|
|
280 |
lora_config = config.get("lora_config", {})
|
281 |
dataset_config = config.get("dataset_config", {})
|
282 |
|
283 |
+
# Log dataset info before loading
|
284 |
+
logger.info(f"Will load dataset: {dataset_name}")
|
285 |
+
if dataset_name != DEFAULT_DATASET and "phi4-cognitive-dataset" in dataset_name:
|
286 |
+
logger.warning(f"Dataset name may need namespace prefix. Current: {dataset_name}")
|
287 |
+
|
288 |
# Load and prepare dataset with proper sorting
|
289 |
dataset = load_and_prepare_dataset(dataset_name, config)
|
290 |
|
|
|
426 |
json.dump(config, f, indent=2)
|
427 |
|
428 |
logger.info("Training complete - RESEARCH PHASE ONLY")
|
429 |
+
|
430 |
+
# Upload to Hugging Face Hub if requested
|
431 |
+
if upload_to_hub:
|
432 |
+
hub_url = upload_to_huggingface(
|
433 |
+
output_dir=output_dir,
|
434 |
+
repo_name=hub_repo_name,
|
435 |
+
private=private_repo
|
436 |
+
)
|
437 |
+
logger.info(f"Model uploaded to Hugging Face Hub: {hub_url}")
|
438 |
+
|
439 |
return output_dir
|
440 |
|
441 |
finally:
|
|
|
446 |
parser = argparse.ArgumentParser(description="Fine-tune DeepSeek model (Research Only)")
|
447 |
parser.add_argument("--config", type=str, default="transformers_config.json",
|
448 |
help="Path to the configuration file")
|
449 |
+
parser.add_argument("--dataset", type=str, default=DEFAULT_DATASET,
|
450 |
help="Dataset name or path")
|
451 |
parser.add_argument("--output_dir", type=str, default="fine_tuned_model",
|
452 |
help="Output directory for the fine-tuned model")
|
453 |
+
parser.add_argument("--upload_to_hub", action="store_true",
|
454 |
+
help="Upload the model to Hugging Face Hub after training")
|
455 |
+
parser.add_argument("--hub_repo_name", type=str, default=None,
|
456 |
+
help="Repository name for the model on Hugging Face Hub")
|
457 |
+
parser.add_argument("--private_repo", action="store_true",
|
458 |
+
help="Make the Hugging Face Hub repository private")
|
459 |
|
460 |
args = parser.parse_args()
|
461 |
|
462 |
try:
|
463 |
+
output_path = train(
|
464 |
+
args.config,
|
465 |
+
args.dataset,
|
466 |
+
args.output_dir,
|
467 |
+
upload_to_hub=args.upload_to_hub,
|
468 |
+
hub_repo_name=args.hub_repo_name,
|
469 |
+
private_repo=args.private_repo
|
470 |
+
)
|
471 |
print(f"Research training completed. Model saved to: {output_path}")
|
472 |
+
|
473 |
+
if args.upload_to_hub:
|
474 |
+
print("Model was also uploaded to Hugging Face Hub.")
|
475 |
except Exception as e:
|
476 |
logging.error(f"Training failed: {str(e)}")
|
477 |
remove_training_marker() # Clean up marker if training fails
|