Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. | |
# | |
# This source code is licensed under the BSD license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from contextlib import contextmanager | |
from typing import Union, cast | |
import pytest | |
import torch | |
import torch.nn as nn | |
from torch.nn.attention import SDPBackend, sdpa_kernel | |
from torch.utils._python_dispatch import TorchDispatchMode, _get_current_dispatch_mode | |
import xformers.ops as xops | |
import xformers.ops.fmha as fmha | |
import xformers.profiler | |
from xformers.profiler import profile_analyzer | |
from xformers.profiler.slow_ops_profiler import GemmOpComputeFlops, flop_mapping | |
cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA") | |
# Not using the PyTorch profiler, as it causes segfaults | |
# in the CI ~30% of the time | |
TEST_SCHEDULE = tuple( | |
x | |
for x in xformers.profiler.api.DEFAULT_SCHEDULE | |
if x[0] is not xformers.profiler.PyTorchProfiler | |
) | |
class GEMMShapeDispatcher(TorchDispatchMode): | |
def __init__(self) -> None: | |
super().__init__() | |
self.mnk = (0, 0, 0) | |
def __torch_dispatch__(self, func, types, args=(), kwargs=None): | |
if kwargs is None: | |
kwargs = {} | |
if func._overloadpacket in flop_mapping: | |
compute_flops = flop_mapping[func._overloadpacket] | |
if isinstance(compute_flops, GemmOpComputeFlops): | |
self.mnk = compute_flops._get_mnk(args) | |
return func(*args) | |
def test_gemm_flops() -> None: | |
M, N, K = 13, 17, 53 | |
a = torch.empty([M, K]) | |
b = torch.empty([K, N]) | |
x = torch.empty([K]) | |
with GEMMShapeDispatcher() as disp: | |
a @ b | |
assert disp.mnk == (M, N, K) | |
with GEMMShapeDispatcher() as disp: | |
a @ x | |
assert disp.mnk == (M, 1, K) | |
with GEMMShapeDispatcher() as disp: | |
torch.nn.functional.linear(a, b.transpose(0, 1)) | |
assert disp.mnk == (M, N, K) | |
with GEMMShapeDispatcher() as disp: | |
torch.addmm(torch.empty([1, 1]), a, b) | |
assert disp.mnk == (M, N, K) | |
B = 3 | |
ba = torch.empty([B, M, K]) | |
bb = torch.empty([B, K, N]) | |
with GEMMShapeDispatcher() as disp: | |
ba @ bb | |
assert disp.mnk == (B * M, N, K) | |
with GEMMShapeDispatcher() as disp: | |
ba @ bb[:1] | |
assert disp.mnk == (B * M, N, K) | |
with GEMMShapeDispatcher() as disp: | |
ba[:1] @ bb | |
assert disp.mnk == (B * M, N, K) | |
with GEMMShapeDispatcher() as disp: | |
ba @ bb[0] | |
assert disp.mnk == (B * M, N, K) | |
with GEMMShapeDispatcher() as disp: | |
torch.addbmm(torch.empty([1, 1]), ba, bb) | |
assert disp.mnk == (B * M, N, K) | |
def test_profiler_dispatcher_stream_workaround() -> None: | |
x = torch.zeros([10, 10], device="cuda") | |
with xformers.profiler.profile( | |
"test_profiler_dispatcher_stream_workaround", schedule=TEST_SCHEDULE | |
): | |
for _ in range(20): | |
x.record_stream(torch.cuda.Stream()) # type: ignore | |
xformers.profiler.step() | |
def test_profiler_overhead(device_bs_mm) -> None: | |
PROFILER_MAX_STEPS_OVERHEAD = 30 | |
device, bs, model_mult = device_bs_mm | |
model = torch.nn.Sequential( | |
torch.nn.Linear(1024, 512 * model_mult), | |
torch.nn.Linear(512 * model_mult, 1024), | |
) | |
model.to(device) | |
inp = torch.randn([bs, 1024], device=device) | |
optim = torch.optim.Adam(model.parameters()) | |
def one_step(model) -> None: | |
model(inp).sum().backward() | |
optim.step() | |
optim.zero_grad() | |
# Warmup | |
for _ in range(2): | |
one_step(model) | |
# Run with profiler | |
with xformers.profiler.profile( | |
"test_profiler_overhead", module=model, schedule=TEST_SCHEDULE | |
): | |
for _ in range(PROFILER_MAX_STEPS_OVERHEAD): | |
one_step(model) | |
assert not model._forward_hooks | |
assert not model._forward_pre_hooks | |
assert not model._backward_hooks | |
assert _get_current_dispatch_mode() is None | |
model_opt = torch.compile(model) | |
model_opt_casted = cast(torch.nn.Module, model_opt) | |
# Warmup | |
for _ in range(2): | |
one_step(model_opt_casted) | |
# Run with profiler | |
with xformers.profiler.profile( | |
"test_profiler_overhead", module=model_opt_casted, schedule=TEST_SCHEDULE | |
): | |
for _ in range(PROFILER_MAX_STEPS_OVERHEAD): | |
one_step(model_opt_casted) | |
assert not model_opt_casted._forward_hooks | |
assert not model_opt_casted._forward_pre_hooks | |
assert not model_opt_casted._backward_hooks | |
assert _get_current_dispatch_mode() is None | |
def assert_flops( | |
error_msg: str, | |
*, | |
match: int = -1, | |
at_least: int = -1, | |
at_most: Union[int, float] = math.inf, | |
fw=True, | |
bw=True, | |
): | |
try: | |
with torch.profiler.profile( | |
profile_memory=True, | |
record_shapes=True, | |
with_stack=True, | |
with_flops=True, | |
activities=[ | |
torch.profiler.ProfilerActivity.CPU, | |
torch.profiler.ProfilerActivity.CUDA, | |
], | |
) as p: | |
yield | |
finally: | |
results = profile_analyzer.AnalyzedTrace.from_profile( | |
p.profiler.kineto_results.events() | |
) | |
total_flops = 0.0 | |
if fw: | |
total_flops += sum(results.operations_per_dtype_fw.values()) | |
if bw: | |
total_flops += sum(results.operations_per_dtype_bw.values()) | |
if match != -1: | |
# Some tolerance | |
assert ( | |
total_flops * 0.99 < match < total_flops * 1.01 | |
), f"{error_msg}: {total_flops} flops, expected {match}" | |
assert total_flops >= at_least, error_msg | |
assert total_flops <= at_most, error_msg | |
def test_analyze_prof(dtype) -> None: | |
B, N = 64, 128 | |
w = torch.empty([128, 128], dtype=dtype, device="cuda", requires_grad=True) | |
x = torch.ones([B, 1, N, 128], dtype=dtype, device="cuda", requires_grad=True) | |
with assert_flops("Linear", match=2 * B * N * 128 * 128): | |
x = x @ w | |
with assert_flops("LinearBW", match=2 * B * N * 128 * 128 * 2, fw=False): | |
x.backward(x) | |
def test_analyze_prof_sdpa(dtype, enable_flash: bool, causal: bool) -> None: | |
B, N = 64, 128 | |
x = torch.ones([B, 1, N, 128], dtype=dtype, device="cuda", requires_grad=True) | |
fw_flops = 2 * 2 * B * N * N * 128 | |
if causal: | |
fw_flops //= 2 | |
with sdpa_kernel( | |
[SDPBackend.EFFICIENT_ATTENTION] | |
+ ([SDPBackend.FLASH_ATTENTION] if enable_flash else []) | |
): | |
with assert_flops("SDPA", match=fw_flops): | |
x = nn.functional.scaled_dot_product_attention(x, x, x, is_causal=causal) | |
with assert_flops("SDPA BW", match=fw_flops * 5 // 2): | |
x.backward(x) | |
def test_analyze_prof_memeff(op, causal: bool) -> None: | |
dtype = torch.float16 | |
B, N = 64, 128 | |
x = torch.ones([B, 1, N, 128], dtype=dtype, device="cuda", requires_grad=True) | |
device_sm = torch.cuda.get_device_capability(x.device) | |
if device_sm < op[0].CUDA_MINIMUM_COMPUTE_CAPABILITY: | |
pytest.skip(f"Requires sm{op[0].CUDA_MINIMUM_COMPUTE_CAPABILITY}") | |
fw_flops = 2 * 2 * B * N * N * 128 | |
bias = None | |
if causal: | |
bias = fmha.attn_bias.LowerTriangularMask() | |
fw_flops //= 2 | |
with assert_flops("memory_efficient_attention", match=fw_flops): | |
y = xops.memory_efficient_attention(x, x, x, attn_bias=bias, op=op) | |
with assert_flops("memory_efficient_attention BW", match=fw_flops * 5 // 2): | |
y.backward(y) | |