# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from contextlib import contextmanager from typing import Union, cast import pytest import torch import torch.nn as nn from torch.nn.attention import SDPBackend, sdpa_kernel from torch.utils._python_dispatch import TorchDispatchMode, _get_current_dispatch_mode import xformers.ops as xops import xformers.ops.fmha as fmha import xformers.profiler from xformers.profiler import profile_analyzer from xformers.profiler.slow_ops_profiler import GemmOpComputeFlops, flop_mapping cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA") # Not using the PyTorch profiler, as it causes segfaults # in the CI ~30% of the time TEST_SCHEDULE = tuple( x for x in xformers.profiler.api.DEFAULT_SCHEDULE if x[0] is not xformers.profiler.PyTorchProfiler ) class GEMMShapeDispatcher(TorchDispatchMode): def __init__(self) -> None: super().__init__() self.mnk = (0, 0, 0) def __torch_dispatch__(self, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} if func._overloadpacket in flop_mapping: compute_flops = flop_mapping[func._overloadpacket] if isinstance(compute_flops, GemmOpComputeFlops): self.mnk = compute_flops._get_mnk(args) return func(*args) def test_gemm_flops() -> None: M, N, K = 13, 17, 53 a = torch.empty([M, K]) b = torch.empty([K, N]) x = torch.empty([K]) with GEMMShapeDispatcher() as disp: a @ b assert disp.mnk == (M, N, K) with GEMMShapeDispatcher() as disp: a @ x assert disp.mnk == (M, 1, K) with GEMMShapeDispatcher() as disp: torch.nn.functional.linear(a, b.transpose(0, 1)) assert disp.mnk == (M, N, K) with GEMMShapeDispatcher() as disp: torch.addmm(torch.empty([1, 1]), a, b) assert disp.mnk == (M, N, K) B = 3 ba = torch.empty([B, M, K]) bb = torch.empty([B, K, N]) with GEMMShapeDispatcher() as disp: ba @ bb assert disp.mnk == (B * M, N, K) with GEMMShapeDispatcher() as disp: ba @ bb[:1] assert disp.mnk == (B * M, N, K) with GEMMShapeDispatcher() as disp: ba[:1] @ bb assert disp.mnk == (B * M, N, K) with GEMMShapeDispatcher() as disp: ba @ bb[0] assert disp.mnk == (B * M, N, K) with GEMMShapeDispatcher() as disp: torch.addbmm(torch.empty([1, 1]), ba, bb) assert disp.mnk == (B * M, N, K) @cuda_only def test_profiler_dispatcher_stream_workaround() -> None: x = torch.zeros([10, 10], device="cuda") with xformers.profiler.profile( "test_profiler_dispatcher_stream_workaround", schedule=TEST_SCHEDULE ): for _ in range(20): x.record_stream(torch.cuda.Stream()) # type: ignore xformers.profiler.step() @cuda_only @pytest.mark.parametrize( "device_bs_mm", [("cpu", 512, 1)] + ( [ # GPU bound ("cuda", 4096, 8), # CPU bound on GPU ("cuda", 1, 1), ] if torch.cuda.is_available() else [] ), ) def test_profiler_overhead(device_bs_mm) -> None: PROFILER_MAX_STEPS_OVERHEAD = 30 device, bs, model_mult = device_bs_mm model = torch.nn.Sequential( torch.nn.Linear(1024, 512 * model_mult), torch.nn.Linear(512 * model_mult, 1024), ) model.to(device) inp = torch.randn([bs, 1024], device=device) optim = torch.optim.Adam(model.parameters()) def one_step(model) -> None: model(inp).sum().backward() optim.step() optim.zero_grad() # Warmup for _ in range(2): one_step(model) # Run with profiler with xformers.profiler.profile( "test_profiler_overhead", module=model, schedule=TEST_SCHEDULE ): for _ in range(PROFILER_MAX_STEPS_OVERHEAD): one_step(model) assert not model._forward_hooks assert not model._forward_pre_hooks assert not model._backward_hooks assert _get_current_dispatch_mode() is None model_opt = torch.compile(model) model_opt_casted = cast(torch.nn.Module, model_opt) # Warmup for _ in range(2): one_step(model_opt_casted) # Run with profiler with xformers.profiler.profile( "test_profiler_overhead", module=model_opt_casted, schedule=TEST_SCHEDULE ): for _ in range(PROFILER_MAX_STEPS_OVERHEAD): one_step(model_opt_casted) assert not model_opt_casted._forward_hooks assert not model_opt_casted._forward_pre_hooks assert not model_opt_casted._backward_hooks assert _get_current_dispatch_mode() is None @contextmanager def assert_flops( error_msg: str, *, match: int = -1, at_least: int = -1, at_most: Union[int, float] = math.inf, fw=True, bw=True, ): try: with torch.profiler.profile( profile_memory=True, record_shapes=True, with_stack=True, with_flops=True, activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], ) as p: yield finally: results = profile_analyzer.AnalyzedTrace.from_profile( p.profiler.kineto_results.events() ) total_flops = 0.0 if fw: total_flops += sum(results.operations_per_dtype_fw.values()) if bw: total_flops += sum(results.operations_per_dtype_bw.values()) if match != -1: # Some tolerance assert ( total_flops * 0.99 < match < total_flops * 1.01 ), f"{error_msg}: {total_flops} flops, expected {match}" assert total_flops >= at_least, error_msg assert total_flops <= at_most, error_msg @pytest.mark.parametrize( "dtype", [torch.float16, torch.float64, torch.float, torch.bfloat16] ) @cuda_only def test_analyze_prof(dtype) -> None: B, N = 64, 128 w = torch.empty([128, 128], dtype=dtype, device="cuda", requires_grad=True) x = torch.ones([B, 1, N, 128], dtype=dtype, device="cuda", requires_grad=True) with assert_flops("Linear", match=2 * B * N * 128 * 128): x = x @ w with assert_flops("LinearBW", match=2 * B * N * 128 * 128 * 2, fw=False): x.backward(x) @pytest.mark.parametrize("dtype", [torch.float16]) @pytest.mark.parametrize("enable_flash", [True, False], ids=["flash", "noFlash"]) @pytest.mark.parametrize("causal", [True, False], ids=["causal", ""]) @cuda_only def test_analyze_prof_sdpa(dtype, enable_flash: bool, causal: bool) -> None: B, N = 64, 128 x = torch.ones([B, 1, N, 128], dtype=dtype, device="cuda", requires_grad=True) fw_flops = 2 * 2 * B * N * N * 128 if causal: fw_flops //= 2 with sdpa_kernel( [SDPBackend.EFFICIENT_ATTENTION] + ([SDPBackend.FLASH_ATTENTION] if enable_flash else []) ): with assert_flops("SDPA", match=fw_flops): x = nn.functional.scaled_dot_product_attention(x, x, x, is_causal=causal) with assert_flops("SDPA BW", match=fw_flops * 5 // 2): x.backward(x) @pytest.mark.parametrize( "op", [ (fmha.cutlass.FwOp, fmha.cutlass.BwOp), (fmha.flash.FwOp, fmha.flash.BwOp), ], ids=["cutlass", "flash"], ) @pytest.mark.parametrize("causal", [True, False], ids=["causal", ""]) @cuda_only def test_analyze_prof_memeff(op, causal: bool) -> None: dtype = torch.float16 B, N = 64, 128 x = torch.ones([B, 1, N, 128], dtype=dtype, device="cuda", requires_grad=True) device_sm = torch.cuda.get_device_capability(x.device) if device_sm < op[0].CUDA_MINIMUM_COMPUTE_CAPABILITY: pytest.skip(f"Requires sm{op[0].CUDA_MINIMUM_COMPUTE_CAPABILITY}") fw_flops = 2 * 2 * B * N * N * 128 bias = None if causal: bias = fmha.attn_bias.LowerTriangularMask() fw_flops //= 2 with assert_flops("memory_efficient_attention", match=fw_flops): y = xops.memory_efficient_attention(x, x, x, attn_bias=bias, op=op) with assert_flops("memory_efficient_attention BW", match=fw_flops * 5 // 2): y.backward(y)