Spaces:
Runtime error
Runtime error
File size: 8,474 Bytes
e202b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import math
from contextlib import contextmanager
from typing import Union, cast
import pytest
import torch
import torch.nn as nn
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.utils._python_dispatch import TorchDispatchMode, _get_current_dispatch_mode
import xformers.ops as xops
import xformers.ops.fmha as fmha
import xformers.profiler
from xformers.profiler import profile_analyzer
from xformers.profiler.slow_ops_profiler import GemmOpComputeFlops, flop_mapping
cuda_only = pytest.mark.skipif(not torch.cuda.is_available(), reason="requires CUDA")
# Not using the PyTorch profiler, as it causes segfaults
# in the CI ~30% of the time
TEST_SCHEDULE = tuple(
x
for x in xformers.profiler.api.DEFAULT_SCHEDULE
if x[0] is not xformers.profiler.PyTorchProfiler
)
class GEMMShapeDispatcher(TorchDispatchMode):
def __init__(self) -> None:
super().__init__()
self.mnk = (0, 0, 0)
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func._overloadpacket in flop_mapping:
compute_flops = flop_mapping[func._overloadpacket]
if isinstance(compute_flops, GemmOpComputeFlops):
self.mnk = compute_flops._get_mnk(args)
return func(*args)
def test_gemm_flops() -> None:
M, N, K = 13, 17, 53
a = torch.empty([M, K])
b = torch.empty([K, N])
x = torch.empty([K])
with GEMMShapeDispatcher() as disp:
a @ b
assert disp.mnk == (M, N, K)
with GEMMShapeDispatcher() as disp:
a @ x
assert disp.mnk == (M, 1, K)
with GEMMShapeDispatcher() as disp:
torch.nn.functional.linear(a, b.transpose(0, 1))
assert disp.mnk == (M, N, K)
with GEMMShapeDispatcher() as disp:
torch.addmm(torch.empty([1, 1]), a, b)
assert disp.mnk == (M, N, K)
B = 3
ba = torch.empty([B, M, K])
bb = torch.empty([B, K, N])
with GEMMShapeDispatcher() as disp:
ba @ bb
assert disp.mnk == (B * M, N, K)
with GEMMShapeDispatcher() as disp:
ba @ bb[:1]
assert disp.mnk == (B * M, N, K)
with GEMMShapeDispatcher() as disp:
ba[:1] @ bb
assert disp.mnk == (B * M, N, K)
with GEMMShapeDispatcher() as disp:
ba @ bb[0]
assert disp.mnk == (B * M, N, K)
with GEMMShapeDispatcher() as disp:
torch.addbmm(torch.empty([1, 1]), ba, bb)
assert disp.mnk == (B * M, N, K)
@cuda_only
def test_profiler_dispatcher_stream_workaround() -> None:
x = torch.zeros([10, 10], device="cuda")
with xformers.profiler.profile(
"test_profiler_dispatcher_stream_workaround", schedule=TEST_SCHEDULE
):
for _ in range(20):
x.record_stream(torch.cuda.Stream()) # type: ignore
xformers.profiler.step()
@cuda_only
@pytest.mark.parametrize(
"device_bs_mm",
[("cpu", 512, 1)]
+ (
[
# GPU bound
("cuda", 4096, 8),
# CPU bound on GPU
("cuda", 1, 1),
]
if torch.cuda.is_available()
else []
),
)
def test_profiler_overhead(device_bs_mm) -> None:
PROFILER_MAX_STEPS_OVERHEAD = 30
device, bs, model_mult = device_bs_mm
model = torch.nn.Sequential(
torch.nn.Linear(1024, 512 * model_mult),
torch.nn.Linear(512 * model_mult, 1024),
)
model.to(device)
inp = torch.randn([bs, 1024], device=device)
optim = torch.optim.Adam(model.parameters())
def one_step(model) -> None:
model(inp).sum().backward()
optim.step()
optim.zero_grad()
# Warmup
for _ in range(2):
one_step(model)
# Run with profiler
with xformers.profiler.profile(
"test_profiler_overhead", module=model, schedule=TEST_SCHEDULE
):
for _ in range(PROFILER_MAX_STEPS_OVERHEAD):
one_step(model)
assert not model._forward_hooks
assert not model._forward_pre_hooks
assert not model._backward_hooks
assert _get_current_dispatch_mode() is None
model_opt = torch.compile(model)
model_opt_casted = cast(torch.nn.Module, model_opt)
# Warmup
for _ in range(2):
one_step(model_opt_casted)
# Run with profiler
with xformers.profiler.profile(
"test_profiler_overhead", module=model_opt_casted, schedule=TEST_SCHEDULE
):
for _ in range(PROFILER_MAX_STEPS_OVERHEAD):
one_step(model_opt_casted)
assert not model_opt_casted._forward_hooks
assert not model_opt_casted._forward_pre_hooks
assert not model_opt_casted._backward_hooks
assert _get_current_dispatch_mode() is None
@contextmanager
def assert_flops(
error_msg: str,
*,
match: int = -1,
at_least: int = -1,
at_most: Union[int, float] = math.inf,
fw=True,
bw=True,
):
try:
with torch.profiler.profile(
profile_memory=True,
record_shapes=True,
with_stack=True,
with_flops=True,
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
) as p:
yield
finally:
results = profile_analyzer.AnalyzedTrace.from_profile(
p.profiler.kineto_results.events()
)
total_flops = 0.0
if fw:
total_flops += sum(results.operations_per_dtype_fw.values())
if bw:
total_flops += sum(results.operations_per_dtype_bw.values())
if match != -1:
# Some tolerance
assert (
total_flops * 0.99 < match < total_flops * 1.01
), f"{error_msg}: {total_flops} flops, expected {match}"
assert total_flops >= at_least, error_msg
assert total_flops <= at_most, error_msg
@pytest.mark.parametrize(
"dtype", [torch.float16, torch.float64, torch.float, torch.bfloat16]
)
@cuda_only
def test_analyze_prof(dtype) -> None:
B, N = 64, 128
w = torch.empty([128, 128], dtype=dtype, device="cuda", requires_grad=True)
x = torch.ones([B, 1, N, 128], dtype=dtype, device="cuda", requires_grad=True)
with assert_flops("Linear", match=2 * B * N * 128 * 128):
x = x @ w
with assert_flops("LinearBW", match=2 * B * N * 128 * 128 * 2, fw=False):
x.backward(x)
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("enable_flash", [True, False], ids=["flash", "noFlash"])
@pytest.mark.parametrize("causal", [True, False], ids=["causal", ""])
@cuda_only
def test_analyze_prof_sdpa(dtype, enable_flash: bool, causal: bool) -> None:
B, N = 64, 128
x = torch.ones([B, 1, N, 128], dtype=dtype, device="cuda", requires_grad=True)
fw_flops = 2 * 2 * B * N * N * 128
if causal:
fw_flops //= 2
with sdpa_kernel(
[SDPBackend.EFFICIENT_ATTENTION]
+ ([SDPBackend.FLASH_ATTENTION] if enable_flash else [])
):
with assert_flops("SDPA", match=fw_flops):
x = nn.functional.scaled_dot_product_attention(x, x, x, is_causal=causal)
with assert_flops("SDPA BW", match=fw_flops * 5 // 2):
x.backward(x)
@pytest.mark.parametrize(
"op",
[
(fmha.cutlass.FwOp, fmha.cutlass.BwOp),
(fmha.flash.FwOp, fmha.flash.BwOp),
],
ids=["cutlass", "flash"],
)
@pytest.mark.parametrize("causal", [True, False], ids=["causal", ""])
@cuda_only
def test_analyze_prof_memeff(op, causal: bool) -> None:
dtype = torch.float16
B, N = 64, 128
x = torch.ones([B, 1, N, 128], dtype=dtype, device="cuda", requires_grad=True)
device_sm = torch.cuda.get_device_capability(x.device)
if device_sm < op[0].CUDA_MINIMUM_COMPUTE_CAPABILITY:
pytest.skip(f"Requires sm{op[0].CUDA_MINIMUM_COMPUTE_CAPABILITY}")
fw_flops = 2 * 2 * B * N * N * 128
bias = None
if causal:
bias = fmha.attn_bias.LowerTriangularMask()
fw_flops //= 2
with assert_flops("memory_efficient_attention", match=fw_flops):
y = xops.memory_efficient_attention(x, x, x, attn_bias=bias, op=op)
with assert_flops("memory_efficient_attention BW", match=fw_flops * 5 // 2):
y.backward(y)
|