File size: 18,266 Bytes
7967808
7c65163
54b7526
618a405
 
8a681a9
7967808
8a681a9
 
 
 
7e5fff1
8a681a9
 
 
 
 
618a405
8a681a9
296bce3
 
 
 
 
8a681a9
 
 
296bce3
 
 
7967808
8a681a9
 
54b7526
296bce3
54b7526
296bce3
b4a3218
296bce3
304a3ae
54b7526
8a681a9
 
54b7526
8a681a9
 
296bce3
8a681a9
 
 
 
296bce3
 
 
8a681a9
54b7526
7967808
 
 
 
54b7526
 
 
 
7967808
 
 
 
 
 
54b7526
 
 
 
 
 
 
8a681a9
d32c681
8a681a9
54b7526
 
 
8a681a9
618a405
8a681a9
296bce3
54b7526
296bce3
 
54b7526
 
8a681a9
618a405
8a681a9
54b7526
8a681a9
54b7526
 
618a405
54b7526
618a405
54b7526
b4a3218
54b7526
 
7967808
 
 
 
 
 
54b7526
 
 
 
 
 
296bce3
8963da2
 
296bce3
 
54b7526
 
8a681a9
54b7526
618a405
 
54b7526
 
 
 
 
 
 
 
 
fb2e9c0
8a681a9
54b7526
8a681a9
54b7526
 
618a405
54b7526
5c3b44c
618a405
 
54b7526
 
 
 
7967808
54b7526
 
618a405
54b7526
7967808
618a405
 
54b7526
8963da2
618a405
296bce3
618a405
5c3b44c
296bce3
 
618a405
54b7526
 
5c3b44c
7967808
 
54b7526
34ff790
7967808
 
54b7526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# app.py: AI Detection and Plagiarism Check API 


from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import JSONResponse
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from PyPDF2 import PdfReader
from sklearn.metrics.pairwise import cosine_similarity
import torch
import os
import numpy as np
import shutil
import uuid
import tempfile
import logging
import time
from typing import Dict, Any

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="Essay Analysis API",
    version="1.0.0",
    docs_url="/docs",
    redoc_url=None
)

# Configuration
CACHE_DIR = "/tmp/cache"
PLAGIARISM_THRESHOLD = 0.82
MAX_TEXT_LENGTH = 512
MODEL_NAME = "Essay-Grader/roberta-ai-detector-20250401_232702"
SENTENCE_MODEL = "sentence-transformers/all-roberta-large-v1"

# Global State
model_status = {
    "model_loaded": False,
    "last_error": None
}

# Model References
embedder = None
ai_tokenizer = None
ai_model = None

def initialize_models():
    global embedder, ai_tokenizer, ai_model
    
    try:
        # Cleanup existing models
        if embedder or ai_model:
            del embedder, ai_tokenizer, ai_model
            torch.cuda.empty_cache()

        # Load models
        logger.info("Loading models...")
        embedder = SentenceTransformer(SENTENCE_MODEL)
        ai_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
        ai_model = AutoModelForSequenceClassification.from_pretrained(
            MODEL_NAME,
            device_map="auto",
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
        ).eval()

        # Warmup
        test_text = "Model initialization text. " * 50
        inputs = ai_tokenizer(test_text, return_tensors="pt", truncation=True)
        with torch.no_grad():
            ai_model(**inputs.to(ai_model.device))

        model_status.update({"model_loaded": True, "last_error": None})
        return True

    except Exception as e:
        error_msg = f"Model load failed: {str(e)}"
        logger.error(error_msg)
        model_status.update({"model_loaded": False, "last_error": error_msg})
        return False

@app.on_event("startup")
async def startup_event():
    for _ in range(3):
        if initialize_models():
            return
        time.sleep(5)
    logger.error("Failed to initialize models")

def extract_text_from_pdf(pdf_path: str) -> str:
    try:
        return " ".join(page.extract_text() for page in PdfReader(pdf_path).pages)
    except Exception as e:
        logger.error(f"PDF error: {str(e)}")
        raise HTTPException(400, "Invalid PDF file")

def chunk_text(text: str) -> list:
    sentences = [s.strip() for s in text.split('.') if s.strip()]
    return ['. '.join(sentences[i:i+5]) + '.' for i in range(0, len(sentences), 5)]

def analyze_content(text: str) -> Dict[str, float]:
    try:
        inputs = ai_tokenizer(
            text,
            truncation=True,
            padding='max_length',
            max_length=MAX_TEXT_LENGTH,
            return_tensors="pt"
        ).to(ai_model.device)
        
        with torch.no_grad():
            outputs = ai_model(**inputs)
            probs = torch.softmax(outputs.logits, dim=1).squeeze()
        
        return {
            "Human_Written": round(probs[0].item() * 100, 2),
            "AI_Generated": round(probs[1].item() * 100, 2)
        }
    except Exception as e:
        logger.error(f"AI analysis failed: {str(e)}")
        raise

def calculate_plagiarism(chunks: list) -> float:
    if len(chunks) < 2:
        return 0.0
    
    embeddings = embedder.encode(chunks, batch_size=32)
    similarity_matrix = cosine_similarity(embeddings)
    np.fill_diagonal(similarity_matrix, 0)
    
    similar_pairs = np.sum(similarity_matrix > PLAGIARISM_THRESHOLD)
    total_possible = len(chunks) * (len(chunks) - 1) // 2
    
    return round((similar_pairs / total_possible) * 100, 2) if total_possible else 0.0

@app.post("/analyze")
async def analyze_essay(file: UploadFile = File(...)) -> Dict[str, Any]:
    if not model_status["model_loaded"]:
        raise HTTPException(503, "Service unavailable")
    
    if not file.filename.lower().endswith(".pdf"):
        raise HTTPException(400, "PDF files only")

    try:
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Save file
            file_path = f"{tmp_dir}/{uuid.uuid4()}.pdf"
            with open(file_path, "wb") as f:
                shutil.copyfileobj(file.file, f)
            
            # Process
            text = extract_text_from_pdf(file_path)
            if not text.strip():
                raise HTTPException(400, "Empty PDF content")
            
            return {
                "analysis": {
                    **analyze_content(text),
                    "Plagiarism_Score": calculate_plagiarism(chunk_text(text))
                },
                "status": "success"
            }

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Processing failed: {str(e)}")
        raise HTTPException(500, "Analysis error")

@app.get("/health")
async def health_check() -> Dict[str, Any]:
    return {"status": "operational" if model_status["model_loaded"] else "degraded"}

@app.get("/")
async def root():
    return {"message": "Essay Analysis API - POST PDFs to /analyze"}


# from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
# from fastapi.responses import JSONResponse
# from sentence_transformers import SentenceTransformer
# from transformers import AutoModelForSequenceClassification, AutoTokenizer
# from PyPDF2 import PdfReader
# from sklearn.metrics.pairwise import cosine_similarity
# import torch
# import os
# import numpy as np
# import shutil
# import uuid
# import tempfile
# import logging
# import time
# from typing import Dict, Any

# # Configure logging
# logging.basicConfig(
#     level=logging.INFO,
#     format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
# )
# logger = logging.getLogger(__name__)

# app = FastAPI(
#     title="Essay Analysis API",
#     description="API for AI Content Detection and Plagiarism Checking",
#     version="1.0.0",
#     docs_url="/docs",
#     redoc_url=None
# )

# # Configuration Constants
# CACHE_DIR = "/tmp/cache"
# PLAGIARISM_THRESHOLD = 0.82  # Adjusted threshold for better differentiation
# MAX_TEXT_LENGTH = 512
# MODEL_NAME = "Essay-Grader/roberta-ai-detector-20250401_232702"
# SENTENCE_MODEL = "sentence-transformers/all-roberta-large-v1"

# # Global State Management
# model_status = {
#     "model_loaded": False,
#     "last_error": None,
#     "last_reload_attempt": None,
#     "retry_count": 0
# }

# # Model References
# embedder = None
# ai_tokenizer = None
# ai_model = None

# def initialize_models():
#     """Initialize ML models with enhanced error handling"""
#     global embedder, ai_tokenizer, ai_model
    
#     try:
#         # Clear previous models and cache
#         if embedder or ai_model:
#             del embedder, ai_tokenizer, ai_model
#             torch.cuda.empty_cache()

#         logger.info("Loading sentence transformer model...")
#         embedder = SentenceTransformer(
#             SENTENCE_MODEL,
#             cache_folder=CACHE_DIR,
#             device='cuda' if torch.cuda.is_available() else 'cpu'
#         )

#         logger.info(f"Loading AI detection model: {MODEL_NAME}")
#         ai_tokenizer = AutoTokenizer.from_pretrained(
#             MODEL_NAME,
#             cache_dir=CACHE_DIR,
#             use_fast=True,
#             padding_side='left'
#         )
        
#         ai_model = AutoModelForSequenceClassification.from_pretrained(
#             MODEL_NAME,
#             cache_dir=CACHE_DIR,
#             use_safetensors=True,
#             device_map="auto",
#             trust_remote_code=True,
#             torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
#         ).eval()

#         # Warmup with varied inputs
#         warmup_texts = [
#             "The quick brown fox jumps over the lazy dog.",
#             "Artificial intelligence is transforming modern society.",
#             "Climate change remains one of humanity's greatest challenges."
#         ]
        
#         device = ai_model.device
#         for text in warmup_texts:
#             inputs = ai_tokenizer(
#                 text,
#                 truncation=True,
#                 padding='max_length',
#                 max_length=MAX_TEXT_LENGTH,
#                 return_tensors="pt"
#             ).to(device)
            
#             with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
#                 outputs = ai_model(**inputs)
#                 probs = torch.softmax(outputs.logits, dim=1)
#                 logger.debug(f"Warmup prob: {probs.cpu().numpy()}")

#         model_status.update({
#             "model_loaded": True,
#             "last_error": None
#         })
#         return True

#     except Exception as e:
#         error_msg = f"Model initialization failed: {str(e)}"
#         logger.error(error_msg, exc_info=True)
#         model_status.update({
#             "model_loaded": False,
#             "last_error": error_msg
#         })
#         return False

# @app.on_event("startup")
# async def startup_event():
#     """Enhanced startup with better resource management"""
#     os.makedirs(CACHE_DIR, exist_ok=True)
#     max_retries = 3

#     while model_status["retry_count"] < max_retries:
#         if initialize_models():
#             model_status.update({"retry_count": 0})
#             return
#         model_status["retry_count"] += 1
#         logger.warning(f"Retry attempt {model_status['retry_count']}/{max_retries}")
#         time.sleep(10)
#         torch.cuda.empty_cache()

#     logger.critical("Failed to initialize models after multiple attempts")

# def extract_text_from_pdf(pdf_path: str) -> str:
#     """Robust PDF text extraction"""
#     try:
#         reader = PdfReader(pdf_path)
#         text = []
#         for page in reader.pages:
#             page_text = page.extract_text()
#             if page_text:
#                 text.append(page_text.strip())
#         return "\n".join(text)
#     except Exception as e:
#         logger.error(f"PDF extraction failed: {str(e)}")
#         raise RuntimeError("Failed to extract text from PDF")

# def chunk_text(text: str, chunk_size: int = 5) -> list:
#     """Improved text chunking with overlap"""
#     sentences = [s.strip() for s in text.split('.') if s.strip()]
#     chunks = []
#     for i in range(0, len(sentences), chunk_size):
#         start = max(0, i - 1)  # Add overlap
#         end = i + chunk_size
#         chunk = '. '.join(sentences[start:end]) + '.'
#         chunks.append(chunk)
#     return chunks

# def analyze_ai_content(text: str) -> Dict[str, float]:
#     """Enhanced AI analysis with dynamic batching"""
#     try:
#         if len(text) < 100:
#             logger.warning("Text too short for reliable analysis")
#             return {"human_written": 50.0, "ai_generated": 50.0}

#         device = ai_model.device
#         inputs = ai_tokenizer(
#             text,
#             truncation=True,
#             padding='max_length',
#             max_length=MAX_TEXT_LENGTH,
#             return_tensors="pt"
#         ).to(device)

#         # Handle long texts with sliding window
#         if inputs.input_ids.shape[1] > MAX_TEXT_LENGTH:
#             window_size = MAX_TEXT_LENGTH - 128  # 128 token overlap
#             all_probs = []
#             for i in range(0, inputs.input_ids.shape[1], window_size):
#                 chunk = inputs.input_ids[:, i:i+MAX_TEXT_LENGTH]
#                 with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
#                     outputs = ai_model(input_ids=chunk)
#                     probs = torch.softmax(outputs.logits, dim=1)
#                     all_probs.append(probs.cpu())
#             avg_probs = torch.mean(torch.cat(all_probs), dim=0)
#         else:
#             with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
#                 outputs = ai_model(**inputs)
#                 avg_probs = torch.softmax(outputs.logits, dim=1).squeeze()

#         human = avg_probs[0].item() * 100
#         ai = avg_probs[1].item() * 100

#         logger.info(f"AI detection results - Human: {human:.2f}%, AI: {ai:.2f}%")
#         return {
#             "human_written": round(human, 2),
#             "ai_generated": round(ai, 2)
#         }

#     except Exception as e:
#         logger.error(f"AI analysis error: {str(e)}", exc_info=True)
#         raise RuntimeError("Failed to analyze text content")

# def calculate_plagiarism_score(chunks: list) -> float:
#     """Improved plagiarism detection with adaptive thresholds"""
#     if len(chunks) < 2:
#         return 0.0

#     try:
#         # Dynamic batch sizing
#         batch_size = 32 if torch.cuda.is_available() else 8
#         embeddings = []
        
#         for i in range(0, len(chunks), batch_size):
#             batch = chunks[i:i+batch_size]
#             batch_embeddings = embedder.encode(
#                 batch,
#                 convert_to_tensor=True,
#                 show_progress_bar=False,
#                 normalize_embeddings=True
#             )
#             embeddings.append(batch_embeddings.cpu().numpy())

#         embeddings = np.concatenate(embeddings)
#         similarity_matrix = cosine_similarity(embeddings)
#         np.fill_diagonal(similarity_matrix, -1)  # Ignore self-similarity

#         # Adaptive threshold calculation
#         avg_sim = np.mean(similarity_matrix)
#         std_dev = np.std(similarity_matrix)
#         dynamic_threshold = min(
#             PLAGIARISM_THRESHOLD,
#             avg_sim + std_dev * 0.5
#         )
#         logger.info(f"Using dynamic plagiarism threshold: {dynamic_threshold:.3f}")

#         similar_pairs = np.sum(similarity_matrix > dynamic_threshold)
#         total_possible = len(chunks) * (len(chunks) - 1) // 2
        
#         score = round((similar_pairs / total_possible) * 100, 2) if total_possible else 0.0
#         logger.info(f"Plagiarism score: {score}%")
#         return score

#     except Exception as e:
#         logger.error(f"Plagiarism calculation error: {str(e)}", exc_info=True)
#         raise RuntimeError("Failed to calculate plagiarism score")

# @app.post("/analyze")
# async def analyze_document(file: UploadFile = File(...)) -> Dict[str, Any]:
#     """Enhanced analysis endpoint with detailed processing"""
#     start_time = time.time()
    
#     if not model_status["model_loaded"]:
#         raise HTTPException(503, "Service unavailable - models not loaded")

#     if not file.filename.lower().endswith(".pdf"):
#         raise HTTPException(400, "Only PDF files are supported")

#     try:
#         with tempfile.TemporaryDirectory() as tmp_dir:
#             # File handling
#             file_path = os.path.join(tmp_dir, f"{uuid.uuid4()}.pdf")
#             with open(file_path, "wb") as buffer:
#                 shutil.copyfileobj(file.file, buffer)

#             logger.info(f"Processing file: {file.filename}")
#             text = extract_text_from_pdf(file_path)
            
#             if not text.strip():
#                 raise HTTPException(400, "No text found in document")
                
#             text_length = len(text)
#             logger.info(f"Extracted {text_length} characters")

#             if text_length < 200:
#                 raise HTTPException(400, "Insufficient text for analysis")

#             # Core analysis
#             ai_result = analyze_ai_content(text)
#             chunks = chunk_text(text)
#             logger.info(f"Analyzing {len(chunks)} text chunks")
#             plagiarism_score = calculate_plagiarism_score(chunks)

#             # Result compilation
#             processing_time = time.time() - start_time
#             logger.info(f"Analysis completed in {processing_time:.2f}s")
            
#             return {
#                 "analysis": {
#                     "ai_detection": ai_result,
#                     "plagiarism_score": plagiarism_score,
#                     "text_metrics": {
#                         "characters": text_length,
#                         "chunks_analyzed": len(chunks)
#                     },
#                     "processing_time": round(processing_time, 2)
#                 },
#                 "status": "success"
#             }

#     except HTTPException:
#         raise
#     except Exception as e:
#         logger.error(f"Analysis pipeline failed: {str(e)}", exc_info=True)
#         raise HTTPException(500, f"Analysis failed: {str(e)}")

# @app.get("/health")
# async def health_check() -> Dict[str, Any]:
#     """Enhanced health check with resource info"""
#     return {
#         "status": "operational" if model_status["model_loaded"] else "degraded",
#         "model_loaded": model_status["model_loaded"],
#         "last_error": model_status["last_error"],
#         "system": {
#             "device": str(ai_model.device) if ai_model else "unknown",
#             "torch_version": torch.__version__,
#             "cuda_available": torch.cuda.is_available()
#         }
#     }

# @app.post("/reload-models")
# async def reload_models(background_tasks: BackgroundTasks):
#     """Model reload endpoint with resource cleanup"""
#     background_tasks.add_task(initialize_models)
#     return {"status": "reload-initiated", "message": "Model reload in progress"}

# @app.get("/")
# async def root():
#     """Root endpoint with documentation"""
#     return {
#         "service": "Essay Analysis API",
#         "version": "1.0.0",
#         "endpoints": {
#             "/analyze": "POST - Analyze PDF document",
#             "/health": "GET - System health check",
#             "/reload-models": "POST - Reload AI models"
#         }
#     }