Commit
·
296bce3
1
Parent(s):
618a405
Added new file
Browse files- Dockerfile +14 -17
- app.py +143 -110
- requirements.txt +4 -2
- verify_model.py +15 -0
Dockerfile
CHANGED
@@ -2,34 +2,31 @@ FROM python:3.9-slim
|
|
2 |
|
3 |
WORKDIR /code
|
4 |
|
5 |
-
#
|
6 |
-
ENV
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
11 |
-
#
|
12 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
13 |
build-essential \
|
14 |
git \
|
15 |
&& rm -rf /var/lib/apt/lists/*
|
16 |
|
17 |
-
# Create
|
18 |
-
RUN mkdir -p
|
|
|
19 |
|
20 |
-
# Create non-root user and switch to it
|
21 |
-
RUN useradd -m appuser && chown -R appuser /code /tmp/cache
|
22 |
USER appuser
|
23 |
|
24 |
-
#
|
25 |
COPY --chown=appuser:appuser requirements.txt .
|
26 |
-
RUN pip install --no-cache-dir
|
|
|
27 |
|
28 |
# Copy application code
|
29 |
COPY --chown=appuser:appuser app.py .
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
python -c "from transformers import AutoModel; AutoModel.from_pretrained('Essay-Grader/roberta-ai-detector-20250401_232702', use_safetensors=True)"
|
34 |
-
|
35 |
-
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
2 |
|
3 |
WORKDIR /code
|
4 |
|
5 |
+
# Hugging Face Space requirements
|
6 |
+
ENV HF_HOME=/tmp/cache \
|
7 |
+
TRANSFORMERS_CACHE=/tmp/cache \
|
8 |
+
SENTENCE_TRANSFORMERS_HOME=/tmp/cache \
|
9 |
+
PATH="/home/appuser/.local/bin:${PATH}"
|
10 |
|
11 |
+
# System dependencies
|
12 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
13 |
build-essential \
|
14 |
git \
|
15 |
&& rm -rf /var/lib/apt/lists/*
|
16 |
|
17 |
+
# Create cache directory and non-root user
|
18 |
+
RUN mkdir -p ${HF_HOME} && chmod 777 ${HF_HOME} && \
|
19 |
+
useradd -m appuser && chown -R appuser /code ${HF_HOME}
|
20 |
|
|
|
|
|
21 |
USER appuser
|
22 |
|
23 |
+
# Install Python dependencies
|
24 |
COPY --chown=appuser:appuser requirements.txt .
|
25 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
26 |
+
pip install --no-cache-dir -r requirements.txt
|
27 |
|
28 |
# Copy application code
|
29 |
COPY --chown=appuser:appuser app.py .
|
30 |
|
31 |
+
# Hugging Face Space-specific CMD
|
32 |
+
CMD ["python", "-m", "uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
|
|
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
# app.py:
|
2 |
-
|
3 |
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
|
4 |
from fastapi.responses import JSONResponse
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
-
from transformers import
|
7 |
from PyPDF2 import PdfReader
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
import torch
|
@@ -16,163 +15,191 @@ import logging
|
|
16 |
import time
|
17 |
from typing import Dict, Any
|
18 |
|
19 |
-
#
|
20 |
-
logging.basicConfig(
|
|
|
|
|
|
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
app = FastAPI(
|
24 |
-
title="Essay
|
25 |
-
description="API for AI
|
26 |
-
version="1.
|
|
|
|
|
27 |
)
|
28 |
|
29 |
-
# Configuration
|
30 |
-
CACHE_DIR = "/tmp/cache"
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
-
# Global
|
36 |
model_status = {
|
37 |
"model_loaded": False,
|
38 |
"last_error": None,
|
39 |
-
"last_reload_attempt": None
|
|
|
40 |
}
|
41 |
|
42 |
-
#
|
43 |
embedder = None
|
44 |
ai_tokenizer = None
|
45 |
ai_model = None
|
46 |
|
47 |
-
def
|
48 |
-
"""
|
49 |
-
global embedder, ai_tokenizer, ai_model
|
50 |
-
|
51 |
-
model_status["last_reload_attempt"] = time.time()
|
52 |
-
model_status["last_error"] = None
|
53 |
-
|
54 |
try:
|
55 |
-
#
|
56 |
-
logger.info("Loading
|
57 |
embedder = SentenceTransformer(
|
58 |
-
|
59 |
cache_folder=CACHE_DIR
|
60 |
)
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
logger.info(f"Loading AI detection model: {ai_model_name}")
|
65 |
-
|
66 |
-
# Load tokenizer and model
|
67 |
ai_tokenizer = AutoTokenizer.from_pretrained(
|
68 |
-
|
69 |
cache_dir=CACHE_DIR,
|
70 |
use_fast=True
|
71 |
)
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
cache_dir=CACHE_DIR,
|
76 |
-
|
77 |
-
|
78 |
)
|
79 |
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
test_text,
|
84 |
return_tensors="pt",
|
85 |
max_length=MAX_TEXT_LENGTH,
|
86 |
truncation=True,
|
87 |
padding=True
|
88 |
)
|
89 |
with torch.no_grad():
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
return True
|
95 |
|
96 |
except Exception as e:
|
97 |
-
error_msg = f"
|
98 |
logger.error(error_msg)
|
99 |
-
model_status
|
100 |
-
|
|
|
|
|
101 |
return False
|
102 |
|
103 |
@app.on_event("startup")
|
104 |
-
async def
|
105 |
-
"""
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
time.sleep(5)
|
113 |
-
|
114 |
-
|
115 |
-
logger.error("Failed to load models after 3 attempts")
|
116 |
|
117 |
def extract_text_from_pdf(pdf_path: str) -> str:
|
118 |
-
"""Extract text from PDF
|
119 |
try:
|
120 |
reader = PdfReader(pdf_path)
|
121 |
return " ".join(page.extract_text() or "" for page in reader.pages)
|
122 |
except Exception as e:
|
123 |
-
logger.error(f"PDF extraction
|
124 |
raise RuntimeError("Failed to extract text from PDF")
|
125 |
|
126 |
def chunk_text(text: str, chunk_size: int = 5) -> list:
|
127 |
-
"""Split text into chunks
|
128 |
sentences = [s.strip() for s in text.split('.') if s.strip()]
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
def
|
151 |
-
"""Calculate plagiarism percentage
|
152 |
if len(chunks) < 2:
|
153 |
return 0.0
|
154 |
|
155 |
embeddings = embedder.encode(chunks)
|
156 |
similarity_matrix = cosine_similarity(embeddings)
|
157 |
-
np.fill_diagonal(similarity_matrix, 0)
|
158 |
|
159 |
-
# Count similar pairs
|
160 |
similar_pairs = np.sum(similarity_matrix > PLAGIARISM_THRESHOLD)
|
161 |
-
total_possible = len(chunks) * (len(chunks) - 1)
|
162 |
|
163 |
-
return round((similar_pairs / total_possible) * 100, 2) if total_possible
|
164 |
|
165 |
@app.post("/analyze")
|
166 |
-
async def
|
167 |
file: UploadFile = File(...),
|
168 |
background_tasks: BackgroundTasks = None
|
169 |
) -> Dict[str, Any]:
|
170 |
-
"""
|
171 |
if not model_status["model_loaded"]:
|
172 |
-
raise HTTPException(
|
|
|
|
|
|
|
173 |
|
174 |
if not file.filename.lower().endswith(".pdf"):
|
175 |
-
raise HTTPException(
|
176 |
|
177 |
try:
|
178 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
@@ -180,46 +207,52 @@ async def analyze_essay(
|
|
180 |
file_path = os.path.join(tmp_dir, f"{uuid.uuid4()}.pdf")
|
181 |
with open(file_path, "wb") as buffer:
|
182 |
shutil.copyfileobj(file.file, buffer)
|
183 |
-
|
184 |
-
# Process
|
185 |
text = extract_text_from_pdf(file_path)
|
186 |
if not text.strip():
|
187 |
-
raise HTTPException(
|
188 |
|
189 |
-
#
|
190 |
-
ai_result =
|
191 |
chunks = chunk_text(text)
|
192 |
-
|
193 |
|
194 |
return {
|
195 |
"analysis": {
|
196 |
"ai_detection": ai_result,
|
197 |
-
"
|
198 |
},
|
199 |
-
"status": "
|
200 |
}
|
201 |
|
|
|
|
|
202 |
except Exception as e:
|
203 |
-
logger.error(f"Analysis failed: {str(e)}")
|
204 |
-
raise HTTPException(
|
205 |
|
206 |
@app.post("/reload-models")
|
207 |
async def reload_models(background_tasks: BackgroundTasks):
|
208 |
-
"""
|
209 |
-
background_tasks.add_task(
|
210 |
-
return {"status": "reload-initiated", "message": "Model reload
|
211 |
|
212 |
@app.get("/health")
|
213 |
async def health_check() -> Dict[str, Any]:
|
214 |
-
"""System health
|
215 |
return {
|
|
|
216 |
"model_loaded": model_status["model_loaded"],
|
217 |
"last_error": model_status["last_error"],
|
218 |
-
"
|
219 |
-
"status": "operational" if model_status["model_loaded"] else "degraded"
|
220 |
}
|
221 |
|
222 |
@app.get("/")
|
223 |
async def root():
|
224 |
-
"""Root endpoint
|
225 |
-
return {
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py: AI Detection and Plagiarism Check API
|
|
|
2 |
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
|
3 |
from fastapi.responses import JSONResponse
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
+
from transformers import RobertaForSequenceClassification, AutoTokenizer
|
6 |
from PyPDF2 import PdfReader
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
import torch
|
|
|
15 |
import time
|
16 |
from typing import Dict, Any
|
17 |
|
18 |
+
# Configure logging
|
19 |
+
logging.basicConfig(
|
20 |
+
level=logging.INFO,
|
21 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
22 |
+
)
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
app = FastAPI(
|
26 |
+
title="Essay Analysis API",
|
27 |
+
description="API for AI Content Detection and Plagiarism Checking",
|
28 |
+
version="1.0.0",
|
29 |
+
docs_url="/docs",
|
30 |
+
redoc_url=None
|
31 |
)
|
32 |
|
33 |
+
# Configuration Constants
|
34 |
+
CACHE_DIR = "/tmp/cache"
|
35 |
+
PLAGIARISM_THRESHOLD = 0.85
|
36 |
+
MAX_TEXT_LENGTH = 512
|
37 |
+
MODEL_NAME = "Essay-Grader/roberta-ai-detector-20250401_232702"
|
38 |
+
SENTENCE_MODEL = "sentence-transformers/all-roberta-large-v1"
|
39 |
|
40 |
+
# Global State Management
|
41 |
model_status = {
|
42 |
"model_loaded": False,
|
43 |
"last_error": None,
|
44 |
+
"last_reload_attempt": None,
|
45 |
+
"retry_count": 0
|
46 |
}
|
47 |
|
48 |
+
# Model References
|
49 |
embedder = None
|
50 |
ai_tokenizer = None
|
51 |
ai_model = None
|
52 |
|
53 |
+
def initialize_models():
|
54 |
+
"""Initialize ML models with error handling and retry logic"""
|
55 |
+
global embedder, ai_tokenizer, ai_model
|
56 |
+
|
|
|
|
|
|
|
57 |
try:
|
58 |
+
# Initialize Sentence Transformer
|
59 |
+
logger.info("Loading sentence transformer model...")
|
60 |
embedder = SentenceTransformer(
|
61 |
+
SENTENCE_MODEL,
|
62 |
cache_folder=CACHE_DIR
|
63 |
)
|
64 |
|
65 |
+
# Initialize AI Detection Model
|
66 |
+
logger.info(f"Loading AI detection model: {MODEL_NAME}")
|
|
|
|
|
|
|
67 |
ai_tokenizer = AutoTokenizer.from_pretrained(
|
68 |
+
MODEL_NAME,
|
69 |
cache_dir=CACHE_DIR,
|
70 |
use_fast=True
|
71 |
)
|
72 |
+
|
73 |
+
# Modified to fix safetensors loading issue
|
74 |
+
ai_model = RobertaForSequenceClassification.from_pretrained(
|
75 |
+
MODEL_NAME,
|
76 |
cache_dir=CACHE_DIR,
|
77 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
78 |
+
trust_remote_code=True
|
79 |
)
|
80 |
|
81 |
+
# Model warmup
|
82 |
+
test_input = ai_tokenizer(
|
83 |
+
"Model initialization text " * 20,
|
|
|
84 |
return_tensors="pt",
|
85 |
max_length=MAX_TEXT_LENGTH,
|
86 |
truncation=True,
|
87 |
padding=True
|
88 |
)
|
89 |
with torch.no_grad():
|
90 |
+
# Move input tensors to model device
|
91 |
+
if hasattr(ai_model, "device"):
|
92 |
+
test_input = {k: v.to(ai_model.device) for k, v in test_input.items()}
|
93 |
+
ai_model(**test_input)
|
94 |
+
|
95 |
+
logger.info("All models loaded successfully")
|
96 |
+
model_status.update({
|
97 |
+
"model_loaded": True,
|
98 |
+
"last_error": None
|
99 |
+
})
|
100 |
return True
|
101 |
|
102 |
except Exception as e:
|
103 |
+
error_msg = f"Model initialization failed: {str(e)}"
|
104 |
logger.error(error_msg)
|
105 |
+
model_status.update({
|
106 |
+
"last_error": error_msg,
|
107 |
+
"model_loaded": False
|
108 |
+
})
|
109 |
return False
|
110 |
|
111 |
@app.on_event("startup")
|
112 |
+
async def startup_event():
|
113 |
+
"""Application startup with retry logic"""
|
114 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
115 |
+
max_retries = 3
|
116 |
+
|
117 |
+
while model_status["retry_count"] < max_retries:
|
118 |
+
if initialize_models():
|
119 |
+
model_status.update({
|
120 |
+
"model_loaded": True,
|
121 |
+
"retry_count": 0
|
122 |
+
})
|
123 |
+
return
|
124 |
+
model_status["retry_count"] += 1
|
125 |
+
logger.warning(f"Retry attempt {model_status['retry_count']}/{max_retries}")
|
126 |
time.sleep(5)
|
127 |
+
|
128 |
+
logger.critical("Failed to initialize models after multiple attempts")
|
|
|
129 |
|
130 |
def extract_text_from_pdf(pdf_path: str) -> str:
|
131 |
+
"""Extract and concatenate text from PDF"""
|
132 |
try:
|
133 |
reader = PdfReader(pdf_path)
|
134 |
return " ".join(page.extract_text() or "" for page in reader.pages)
|
135 |
except Exception as e:
|
136 |
+
logger.error(f"PDF extraction error: {str(e)}")
|
137 |
raise RuntimeError("Failed to extract text from PDF")
|
138 |
|
139 |
def chunk_text(text: str, chunk_size: int = 5) -> list:
|
140 |
+
"""Split text into coherent chunks"""
|
141 |
sentences = [s.strip() for s in text.split('.') if s.strip()]
|
142 |
+
chunks = []
|
143 |
+
for i in range(0, len(sentences), chunk_size):
|
144 |
+
chunk = '. '.join(sentences[i:i+chunk_size]) + '.'
|
145 |
+
chunks.append(chunk)
|
146 |
+
return chunks
|
147 |
+
|
148 |
+
def analyze_ai_content(text: str) -> Dict[str, float]:
|
149 |
+
"""Analyze text for AI-generated content"""
|
150 |
+
try:
|
151 |
+
inputs = ai_tokenizer(
|
152 |
+
text,
|
153 |
+
truncation=True,
|
154 |
+
padding=True,
|
155 |
+
return_tensors="pt",
|
156 |
+
max_length=MAX_TEXT_LENGTH
|
157 |
+
)
|
158 |
+
|
159 |
+
# Move tensors to the same device as the model
|
160 |
+
device = next(ai_model.parameters()).device
|
161 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
162 |
+
|
163 |
+
with torch.no_grad():
|
164 |
+
outputs = ai_model(**inputs)
|
165 |
+
probs = torch.softmax(outputs.logits, dim=1).squeeze()
|
166 |
+
|
167 |
+
return {
|
168 |
+
"human_written": round(probs[0].item() * 100, 2),
|
169 |
+
"ai_generated": round(probs[1].item() * 100, 2)
|
170 |
+
}
|
171 |
+
except Exception as e:
|
172 |
+
logger.error(f"AI analysis failed: {str(e)}")
|
173 |
+
raise RuntimeError("Failed to analyze text content")
|
174 |
|
175 |
+
def calculate_plagiarism_score(chunks: list) -> float:
|
176 |
+
"""Calculate plagiarism percentage using similarity analysis"""
|
177 |
if len(chunks) < 2:
|
178 |
return 0.0
|
179 |
|
180 |
embeddings = embedder.encode(chunks)
|
181 |
similarity_matrix = cosine_similarity(embeddings)
|
182 |
+
np.fill_diagonal(similarity_matrix, 0)
|
183 |
|
|
|
184 |
similar_pairs = np.sum(similarity_matrix > PLAGIARISM_THRESHOLD)
|
185 |
+
total_possible = len(chunks) * (len(chunks) - 1) // 2
|
186 |
|
187 |
+
return round((similar_pairs / total_possible) * 100, 2) if total_possible else 0.0
|
188 |
|
189 |
@app.post("/analyze")
|
190 |
+
async def analyze_document(
|
191 |
file: UploadFile = File(...),
|
192 |
background_tasks: BackgroundTasks = None
|
193 |
) -> Dict[str, Any]:
|
194 |
+
"""Main analysis endpoint"""
|
195 |
if not model_status["model_loaded"]:
|
196 |
+
raise HTTPException(
|
197 |
+
status_code=503,
|
198 |
+
detail="Service unavailable - models not loaded"
|
199 |
+
)
|
200 |
|
201 |
if not file.filename.lower().endswith(".pdf"):
|
202 |
+
raise HTTPException(400, "Only PDF files are supported")
|
203 |
|
204 |
try:
|
205 |
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
207 |
file_path = os.path.join(tmp_dir, f"{uuid.uuid4()}.pdf")
|
208 |
with open(file_path, "wb") as buffer:
|
209 |
shutil.copyfileobj(file.file, buffer)
|
210 |
+
|
211 |
+
# Process document
|
212 |
text = extract_text_from_pdf(file_path)
|
213 |
if not text.strip():
|
214 |
+
raise HTTPException(400, "No text found in document")
|
215 |
|
216 |
+
# Perform analysis
|
217 |
+
ai_result = analyze_ai_content(text)
|
218 |
chunks = chunk_text(text)
|
219 |
+
plagiarism_score = calculate_plagiarism_score(chunks)
|
220 |
|
221 |
return {
|
222 |
"analysis": {
|
223 |
"ai_detection": ai_result,
|
224 |
+
"plagiarism_score": plagiarism_score
|
225 |
},
|
226 |
+
"status": "success"
|
227 |
}
|
228 |
|
229 |
+
except HTTPException:
|
230 |
+
raise
|
231 |
except Exception as e:
|
232 |
+
logger.error(f"Analysis pipeline failed: {str(e)}")
|
233 |
+
raise HTTPException(500, f"Analysis failed: {str(e)}")
|
234 |
|
235 |
@app.post("/reload-models")
|
236 |
async def reload_models(background_tasks: BackgroundTasks):
|
237 |
+
"""Model reload endpoint"""
|
238 |
+
background_tasks.add_task(initialize_models)
|
239 |
+
return {"status": "reload-initiated", "message": "Model reload in progress"}
|
240 |
|
241 |
@app.get("/health")
|
242 |
async def health_check() -> Dict[str, Any]:
|
243 |
+
"""System health endpoint"""
|
244 |
return {
|
245 |
+
"status": "operational" if model_status["model_loaded"] else "degraded",
|
246 |
"model_loaded": model_status["model_loaded"],
|
247 |
"last_error": model_status["last_error"],
|
248 |
+
"retry_count": model_status["retry_count"]
|
|
|
249 |
}
|
250 |
|
251 |
@app.get("/")
|
252 |
async def root():
|
253 |
+
"""Root endpoint"""
|
254 |
+
return {
|
255 |
+
"service": "Essay Analysis API",
|
256 |
+
"version": "1.0.0",
|
257 |
+
"endpoints": ["/analyze", "/health", "/reload-models"]
|
258 |
+
}
|
requirements.txt
CHANGED
@@ -7,7 +7,9 @@ torch==2.3.0
|
|
7 |
scikit-learn==1.4.0
|
8 |
PyPDF2==3.0.1
|
9 |
numpy==1.26.4
|
10 |
-
pandas==2.2.1
|
11 |
requests==2.31.0
|
|
|
|
|
12 |
python-multipart==0.0.9
|
13 |
-
|
|
|
|
7 |
scikit-learn==1.4.0
|
8 |
PyPDF2==3.0.1
|
9 |
numpy==1.26.4
|
|
|
10 |
requests==2.31.0
|
11 |
+
safetensors==0.4.3
|
12 |
+
huggingface_hub>=0.23.0,<1.0
|
13 |
python-multipart==0.0.9
|
14 |
+
click==8.1.7
|
15 |
+
accelerate>=0.23.0
|
verify_model.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
|
3 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
4 |
+
"Essay-Grader/roberta-ai-detector-20250401_232702",
|
5 |
+
trust_remote_code=True,
|
6 |
+
device_map="auto"
|
7 |
+
)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
9 |
+
"Essay-Grader/roberta-ai-detector-20250401_232702"
|
10 |
+
)
|
11 |
+
|
12 |
+
text = "Sample essay text for verification"
|
13 |
+
inputs = tokenizer(text, return_tensors="pt")
|
14 |
+
outputs = model(**inputs)
|
15 |
+
print("Model output:", outputs.logits)
|