Commit
·
8a681a9
0
Parent(s):
Initial commit with Docker deployment
Browse files- Dockerfile +26 -0
- README.md +85 -0
- app/main.py +291 -0
- app_loader.py +3 -0
- requirements.txt +228 -0
Dockerfile
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
# Install system dependencies
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
+
build-essential \
|
8 |
+
git \
|
9 |
+
&& rm -rf /var/lib/apt/lists/*
|
10 |
+
|
11 |
+
# Copy requirements first for better caching
|
12 |
+
COPY ./requirements.txt /code/requirements.txt
|
13 |
+
RUN pip install --no-cache-dir -r /code/requirements.txt
|
14 |
+
|
15 |
+
# Create model cache directory
|
16 |
+
RUN mkdir -p ./model_cache
|
17 |
+
|
18 |
+
# Copy application code
|
19 |
+
COPY . /code/
|
20 |
+
|
21 |
+
# Pre-download models (this will take some time)
|
22 |
+
RUN python -c "from sentence_transformers import SentenceTransformer; model = SentenceTransformer('sentence-transformers/all-roberta-large-v1')"
|
23 |
+
RUN python -c "from transformers import AutoTokenizer, AutoModelForSequenceClassification; tokenizer = AutoTokenizer.from_pretrained('ChrispamWrites/roberta-ai-detector-20250401_232702', cache_dir='./model_cache'); model = AutoModelForSequenceClassification.from_pretrained('ChrispamWrites/roberta-ai-detector-20250401_232702', cache_dir='./model_cache')"
|
24 |
+
|
25 |
+
# Run the application on port 7860 (Hugging Face Space default port)
|
26 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Essay Grader API
|
2 |
+
|
3 |
+
This API uses advanced AI models to evaluate essays for:
|
4 |
+
- AI-generated content detection (identifies if content was written by AI)
|
5 |
+
- Internal plagiarism detection (identifies repetitive patterns within the text)
|
6 |
+
|
7 |
+
## Endpoints
|
8 |
+
|
9 |
+
### `GET /health`
|
10 |
+
Checks the API health status and model loading state.
|
11 |
+
|
12 |
+
**Response:**
|
13 |
+
```json
|
14 |
+
{
|
15 |
+
"model_loaded": true,
|
16 |
+
"hub_accessible": true,
|
17 |
+
"pdf_processing": true
|
18 |
+
}
|
19 |
+
```
|
20 |
+
|
21 |
+
### `POST /analyze`
|
22 |
+
Upload a PDF essay for comprehensive analysis.
|
23 |
+
|
24 |
+
**Request:**
|
25 |
+
- Content-Type: multipart/form-data
|
26 |
+
- Body: file (PDF document)
|
27 |
+
|
28 |
+
**Response:**
|
29 |
+
```json
|
30 |
+
{
|
31 |
+
"ai_content_detection": {
|
32 |
+
"label": "Human-written",
|
33 |
+
"confidence": 92.5
|
34 |
+
},
|
35 |
+
"internal_plagiarism_score": 18.3,
|
36 |
+
"max_similarity_between_chunks": 45.2,
|
37 |
+
"chunks_analyzed": 12
|
38 |
+
}
|
39 |
+
```
|
40 |
+
|
41 |
+
# Narrowed Response
|
42 |
+
|
43 |
+
**Response:**
|
44 |
+
```json
|
45 |
+
{
|
46 |
+
"ai_content_detection": {
|
47 |
+
"confidence": 92.5
|
48 |
+
},
|
49 |
+
"internal_plagiarism_score": 18.3,
|
50 |
+
}
|
51 |
+
```
|
52 |
+
|
53 |
+
## Usage Examples
|
54 |
+
|
55 |
+
### Using cURL:
|
56 |
+
```bash
|
57 |
+
curl -X 'POST' \
|
58 |
+
'https://yourusername-essay-grader-api.hf.space/analyze' \
|
59 |
+
-H 'accept: application/json' \
|
60 |
+
-H 'Content-Type: multipart/form-data' \
|
61 |
+
-F 'file=@your_essay.pdf'
|
62 |
+
```
|
63 |
+
|
64 |
+
### Using Python Requests:
|
65 |
+
```python
|
66 |
+
import requests
|
67 |
+
|
68 |
+
url = "https://yourusername-essay-grader-api.hf.space/analyze"
|
69 |
+
files = {"file": open("your_essay.pdf", "rb")}
|
70 |
+
|
71 |
+
response = requests.post(url, files=files)
|
72 |
+
result = response.json()
|
73 |
+
print(result)
|
74 |
+
```
|
75 |
+
|
76 |
+
## Technical Details
|
77 |
+
|
78 |
+
This API uses:
|
79 |
+
- RoBERTa-based models for AI content detection
|
80 |
+
- Sentence transformers for semantic analysis
|
81 |
+
- PyPDF2 for PDF text extraction
|
82 |
+
|
83 |
+
The application is built with FastAPI and deployed on Hugging Face Spaces.
|
84 |
+
|
85 |
+
```Created by: Christian Mpambira(BED-COM-22-20)```
|
app/main.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py: API for AI detection and plagiarism checking using FastAPI
|
2 |
+
|
3 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
|
4 |
+
from fastapi.responses import JSONResponse
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
|
7 |
+
from PyPDF2 import PdfReader
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
import torch
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
+
import uuid
|
13 |
+
import tempfile
|
14 |
+
import logging
|
15 |
+
import requests
|
16 |
+
import time
|
17 |
+
from typing import Dict, Any, List
|
18 |
+
|
19 |
+
# Set up logging
|
20 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
app = FastAPI(
|
24 |
+
title="Essay Grader API",
|
25 |
+
description="API for AI content detection and internal plagiarism detection",
|
26 |
+
version="1.0.0"
|
27 |
+
)
|
28 |
+
|
29 |
+
# Global variables to track model loading status
|
30 |
+
model_status = {
|
31 |
+
"model_loaded": False,
|
32 |
+
"hub_accessible": False,
|
33 |
+
"pdf_processing": True,
|
34 |
+
"last_error": None,
|
35 |
+
"last_reload_attempt": None
|
36 |
+
}
|
37 |
+
|
38 |
+
# Global variables for models
|
39 |
+
embedder = None
|
40 |
+
ai_tokenizer = None
|
41 |
+
ai_model = None
|
42 |
+
|
43 |
+
# Maximum number of retries for model loading
|
44 |
+
MAX_RETRIES = 3
|
45 |
+
# Time between reload attempts (in seconds)
|
46 |
+
RELOAD_INTERVAL = 300 # 5 minutes
|
47 |
+
|
48 |
+
def load_models_impl():
|
49 |
+
"""Implementation of model loading logic with proper error handling"""
|
50 |
+
global embedder, ai_tokenizer, ai_model, model_status
|
51 |
+
|
52 |
+
# Track attempt time
|
53 |
+
model_status["last_reload_attempt"] = time.time()
|
54 |
+
model_status["last_error"] = None
|
55 |
+
|
56 |
+
try:
|
57 |
+
# Check Hugging Face Hub connectivity
|
58 |
+
response = requests.head("https://huggingface.co", timeout=5)
|
59 |
+
if response.status_code == 200:
|
60 |
+
model_status["hub_accessible"] = True
|
61 |
+
logger.info("Successfully connected to Hugging Face Hub")
|
62 |
+
else:
|
63 |
+
logger.error(f"Failed to connect to Hugging Face Hub: {response.status_code}")
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error checking Hugging Face Hub connectivity: {e}")
|
66 |
+
|
67 |
+
try:
|
68 |
+
# Load SentenceTransformer model for embeddings
|
69 |
+
logger.info("Loading SentenceTransformer model...")
|
70 |
+
embedder = SentenceTransformer('sentence-transformers/all-roberta-large-v1')
|
71 |
+
|
72 |
+
# Load AI detection model
|
73 |
+
ai_model_name = "ChrispamWrites/roberta-ai-detector-20250401_232702"
|
74 |
+
logger.info(f"Loading AI detection model: {ai_model_name}")
|
75 |
+
|
76 |
+
# Use local cache if available or download from HF
|
77 |
+
ai_tokenizer = AutoTokenizer.from_pretrained(
|
78 |
+
ai_model_name,
|
79 |
+
local_files_only=not model_status["hub_accessible"],
|
80 |
+
cache_dir="./model_cache"
|
81 |
+
)
|
82 |
+
|
83 |
+
# Load the config first
|
84 |
+
ai_config = AutoConfig.from_pretrained(
|
85 |
+
ai_model_name,
|
86 |
+
local_files_only=not model_status["hub_accessible"],
|
87 |
+
cache_dir="./model_cache"
|
88 |
+
)
|
89 |
+
|
90 |
+
# Modify the config to match the checkpoint's expected dimensions
|
91 |
+
ai_config.max_position_embeddings = 514
|
92 |
+
ai_config.type_vocab_size = 1
|
93 |
+
|
94 |
+
# Load the model with this config
|
95 |
+
ai_model = AutoModelForSequenceClassification.from_pretrained(
|
96 |
+
ai_model_name,
|
97 |
+
config=ai_config,
|
98 |
+
local_files_only=not model_status["hub_accessible"],
|
99 |
+
cache_dir="./model_cache"
|
100 |
+
)
|
101 |
+
|
102 |
+
# If the above doesn't work, try with ignore_mismatched_sizes
|
103 |
+
if ai_model is None:
|
104 |
+
logger.info("Attempting to load model with ignore_mismatched_sizes=True")
|
105 |
+
ai_model = AutoModelForSequenceClassification.from_pretrained(
|
106 |
+
ai_model_name,
|
107 |
+
local_files_only=not model_status["hub_accessible"],
|
108 |
+
cache_dir="./model_cache",
|
109 |
+
ignore_mismatched_sizes=True
|
110 |
+
)
|
111 |
+
|
112 |
+
# Verify models are loaded by testing them
|
113 |
+
test_sentence = "This is a test sentence to verify model loading."
|
114 |
+
|
115 |
+
# Test sentence transformer
|
116 |
+
_ = embedder.encode(test_sentence)
|
117 |
+
|
118 |
+
# Test AI detection model
|
119 |
+
inputs = ai_tokenizer(test_sentence, return_tensors="pt", max_length=512, truncation=True)
|
120 |
+
with torch.no_grad():
|
121 |
+
_ = ai_model(**inputs)
|
122 |
+
|
123 |
+
model_status["model_loaded"] = True
|
124 |
+
logger.info("Models loaded successfully!")
|
125 |
+
return True
|
126 |
+
except Exception as e:
|
127 |
+
error_msg = f"Error loading models: {str(e)}"
|
128 |
+
logger.error(error_msg)
|
129 |
+
model_status["model_loaded"] = False
|
130 |
+
model_status["last_error"] = error_msg
|
131 |
+
return False
|
132 |
+
|
133 |
+
# Load models with proper error handling
|
134 |
+
@app.on_event("startup")
|
135 |
+
async def load_models():
|
136 |
+
"""Initial model loading on startup with retry mechanism"""
|
137 |
+
retries = 0
|
138 |
+
while retries < MAX_RETRIES:
|
139 |
+
if load_models_impl():
|
140 |
+
break
|
141 |
+
retries += 1
|
142 |
+
logger.info(f"Retrying model loading ({retries}/{MAX_RETRIES})...")
|
143 |
+
time.sleep(5) # Wait 5 seconds before retrying
|
144 |
+
|
145 |
+
if not model_status["model_loaded"]:
|
146 |
+
logger.warning(f"Failed to load models after {MAX_RETRIES} attempts. API will start, but analyze endpoint won't work.")
|
147 |
+
|
148 |
+
async def background_model_reload(background_tasks: BackgroundTasks):
|
149 |
+
"""Background task to reload models"""
|
150 |
+
if load_models_impl():
|
151 |
+
logger.info("Successfully reloaded models in background task")
|
152 |
+
else:
|
153 |
+
logger.error("Failed to reload models in background task")
|
154 |
+
|
155 |
+
def extract_text_from_pdf(pdf_path):
|
156 |
+
try:
|
157 |
+
reader = PdfReader(pdf_path)
|
158 |
+
text = ""
|
159 |
+
for page in reader.pages:
|
160 |
+
text += page.extract_text() or ""
|
161 |
+
return text
|
162 |
+
except Exception as e:
|
163 |
+
logger.error(f"Failed to extract text from PDF: {e}")
|
164 |
+
raise RuntimeError(f"Failed to extract text: {e}")
|
165 |
+
|
166 |
+
def chunk_text(text, chunk_size=5):
|
167 |
+
sentences = text.split(".")
|
168 |
+
chunks = [".".join(sentences[i:i + chunk_size]).strip() for i in range(0, len(sentences), chunk_size)]
|
169 |
+
return [chunk for chunk in chunks if chunk]
|
170 |
+
|
171 |
+
def detect_ai_generated(text):
|
172 |
+
inputs = ai_tokenizer(text, truncation=True, padding=True, return_tensors="pt", max_length=512)
|
173 |
+
with torch.no_grad():
|
174 |
+
outputs = ai_model(**inputs)
|
175 |
+
logits = outputs.logits
|
176 |
+
probs = torch.softmax(logits, dim=1).squeeze()
|
177 |
+
predicted_class = torch.argmax(probs).item()
|
178 |
+
confidence = probs[predicted_class].item()
|
179 |
+
|
180 |
+
return {
|
181 |
+
"label": "AI-generated" if predicted_class == 1 else "Human-written",
|
182 |
+
"confidence": round(confidence * 100, 2)
|
183 |
+
}
|
184 |
+
|
185 |
+
@app.get("/health")
|
186 |
+
async def health_check() -> Dict[str, Any]:
|
187 |
+
"""Health check endpoint to verify API and model status"""
|
188 |
+
# Check if reload is needed
|
189 |
+
current_time = time.time()
|
190 |
+
reload_needed = (
|
191 |
+
not model_status["model_loaded"] and
|
192 |
+
(model_status["last_reload_attempt"] is None or
|
193 |
+
current_time - model_status["last_reload_attempt"] > RELOAD_INTERVAL)
|
194 |
+
)
|
195 |
+
|
196 |
+
return {
|
197 |
+
**model_status,
|
198 |
+
"reload_needed": reload_needed,
|
199 |
+
"last_reload_attempt_time": time.strftime('%Y-%m-%d %H:%M:%S',
|
200 |
+
time.localtime(model_status["last_reload_attempt"]))
|
201 |
+
if model_status["last_reload_attempt"] else None
|
202 |
+
}
|
203 |
+
|
204 |
+
@app.post("/reload-models")
|
205 |
+
async def reload_models(background_tasks: BackgroundTasks):
|
206 |
+
"""Endpoint to manually trigger model reloading"""
|
207 |
+
# Check if enough time has passed since last reload attempt
|
208 |
+
current_time = time.time()
|
209 |
+
if (model_status["last_reload_attempt"] is not None and
|
210 |
+
current_time - model_status["last_reload_attempt"] < 60): # Prevent reloading more than once per minute
|
211 |
+
return JSONResponse(content={
|
212 |
+
"message": "Too many reload attempts. Please wait before trying again.",
|
213 |
+
"seconds_until_next_attempt": 60 - int(current_time - model_status["last_reload_attempt"])
|
214 |
+
}, status_code=429)
|
215 |
+
|
216 |
+
background_tasks.add_task(background_model_reload, background_tasks)
|
217 |
+
return {"message": "Model reload initiated in background"}
|
218 |
+
|
219 |
+
@app.post("/analyze")
|
220 |
+
async def analyze_essay(file: UploadFile = File(...), background_tasks: BackgroundTasks = None):
|
221 |
+
global model_status, embedder, ai_tokenizer, ai_model
|
222 |
+
|
223 |
+
# Check if models are loaded
|
224 |
+
if not model_status["model_loaded"]:
|
225 |
+
# Check if we should attempt to reload models
|
226 |
+
current_time = time.time()
|
227 |
+
reload_needed = (
|
228 |
+
model_status["last_reload_attempt"] is None or
|
229 |
+
current_time - model_status["last_reload_attempt"] > RELOAD_INTERVAL
|
230 |
+
)
|
231 |
+
|
232 |
+
if reload_needed and background_tasks:
|
233 |
+
# Start a background reload
|
234 |
+
background_tasks.add_task(background_model_reload, background_tasks)
|
235 |
+
message = "Models are being reloaded in the background. Please try again in a few minutes."
|
236 |
+
else:
|
237 |
+
message = "Model not loaded. Check /health endpoint for details or try /reload-models endpoint."
|
238 |
+
|
239 |
+
raise HTTPException(status_code=503, detail=message)
|
240 |
+
|
241 |
+
# Check if models are actually initialized
|
242 |
+
if embedder is None or ai_tokenizer is None or ai_model is None:
|
243 |
+
logger.error("Models appear loaded but variables are None")
|
244 |
+
raise HTTPException(status_code=503, detail="Model initialization incomplete. Please try again later.")
|
245 |
+
|
246 |
+
if not file.filename.endswith(".pdf"):
|
247 |
+
raise HTTPException(status_code=400, detail="Only PDF files are supported")
|
248 |
+
|
249 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
250 |
+
file_path = os.path.join(tmpdir, f"{uuid.uuid4()}.pdf")
|
251 |
+
with open(file_path, "wb") as buffer:
|
252 |
+
shutil.copyfileobj(file.file, buffer)
|
253 |
+
|
254 |
+
try:
|
255 |
+
essay_text = extract_text_from_pdf(file_path)
|
256 |
+
except RuntimeError as e:
|
257 |
+
raise HTTPException(status_code=500, detail=str(e))
|
258 |
+
|
259 |
+
if not essay_text.strip():
|
260 |
+
raise HTTPException(status_code=400, detail="The PDF seems to contain no extractable text.")
|
261 |
+
|
262 |
+
try:
|
263 |
+
# Run AI content detection
|
264 |
+
ai_result = detect_ai_generated(essay_text)
|
265 |
+
|
266 |
+
# Run internal plagiarism detection
|
267 |
+
chunks = chunk_text(essay_text)
|
268 |
+
if len(chunks) < 2:
|
269 |
+
raise HTTPException(status_code=400, detail="Not enough text chunks to assess internal plagiarism.")
|
270 |
+
|
271 |
+
embeddings = embedder.encode(chunks)
|
272 |
+
similarities = []
|
273 |
+
for i in range(len(embeddings)):
|
274 |
+
for j in range(i + 1, len(embeddings)):
|
275 |
+
sim = cosine_similarity([embeddings[i]], [embeddings[j]])[0][0]
|
276 |
+
similarities.append(sim)
|
277 |
+
|
278 |
+
max_similarity = max(similarities) if similarities else 0
|
279 |
+
avg_similarity = sum(similarities) / len(similarities) if similarities else 0
|
280 |
+
internal_score = round(avg_similarity * 100, 2)
|
281 |
+
except Exception as e:
|
282 |
+
logger.error(f"Error during analysis: {e}")
|
283 |
+
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
|
284 |
+
|
285 |
+
return JSONResponse(content={
|
286 |
+
"ai_content_confidence": ai_result["confidence"],
|
287 |
+
"internal_plagiarism_score": internal_score,
|
288 |
+
"debug_note": "Processed with fixed model configuration"
|
289 |
+
})
|
290 |
+
|
291 |
+
|
app_loader.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from app import app
|
2 |
+
|
3 |
+
# This file is to ensure the app is imported correctly by the Hugging Face Spaces environment
|
requirements.txt
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.2.1
|
2 |
+
accelerate==1.5.2
|
3 |
+
aiohappyeyeballs==2.6.1
|
4 |
+
aiohttp==3.11.14
|
5 |
+
aiosignal==1.3.2
|
6 |
+
annotated-types==0.7.0
|
7 |
+
anyio==4.9.0
|
8 |
+
argcomplete==1.10.0
|
9 |
+
argon2-cffi==23.1.0
|
10 |
+
argon2-cffi-bindings==21.2.0
|
11 |
+
arrow==1.3.0
|
12 |
+
asttokens==3.0.0
|
13 |
+
astunparse==1.6.3
|
14 |
+
async-lru==2.0.5
|
15 |
+
attrs==25.3.0
|
16 |
+
babel==2.17.0
|
17 |
+
beautifulsoup4==4.8.0
|
18 |
+
bleach==6.2.0
|
19 |
+
CacheControl==0.14.2
|
20 |
+
cachetools==5.5.2
|
21 |
+
certifi==2025.1.31
|
22 |
+
cffi==1.17.1
|
23 |
+
chardet==3.0.4
|
24 |
+
charset-normalizer==3.4.1
|
25 |
+
click==8.1.8
|
26 |
+
colorama==0.4.6
|
27 |
+
comm==0.2.2
|
28 |
+
contourpy==1.3.1
|
29 |
+
cryptography==44.0.2
|
30 |
+
cycler==0.12.1
|
31 |
+
datasets==3.5.0
|
32 |
+
debugpy==1.8.13
|
33 |
+
decorator==5.2.1
|
34 |
+
defusedxml==0.7.1
|
35 |
+
dill==0.3.8
|
36 |
+
docx2txt==0.8
|
37 |
+
EbookLib==0.17.1
|
38 |
+
evaluate==0.4.3
|
39 |
+
executing==2.2.0
|
40 |
+
extract-msg==0.23.1
|
41 |
+
fastapi==0.115.12
|
42 |
+
fastjsonschema==2.21.1
|
43 |
+
filelock==3.18.0
|
44 |
+
firebase-admin==6.7.0
|
45 |
+
flatbuffers==25.2.10
|
46 |
+
fonttools==4.56.0
|
47 |
+
fqdn==1.5.1
|
48 |
+
frozenlist==1.5.0
|
49 |
+
fsspec==2024.12.0
|
50 |
+
gast==0.6.0
|
51 |
+
google-api-core==2.24.2
|
52 |
+
google-api-python-client==2.166.0
|
53 |
+
google-auth==2.38.0
|
54 |
+
google-auth-httplib2==0.2.0
|
55 |
+
google-auth-oauthlib==1.2.1
|
56 |
+
google-cloud-core==2.4.3
|
57 |
+
google-cloud-firestore==2.20.1
|
58 |
+
google-cloud-storage==3.1.0
|
59 |
+
google-crc32c==1.7.1
|
60 |
+
google-pasta==0.2.0
|
61 |
+
google-resumable-media==2.7.2
|
62 |
+
googleapis-common-protos==1.69.2
|
63 |
+
grpcio==1.71.0
|
64 |
+
grpcio-status==1.71.0
|
65 |
+
gunicorn==23.0.0
|
66 |
+
h11==0.14.0
|
67 |
+
h5py==3.13.0
|
68 |
+
httpcore==1.0.7
|
69 |
+
httplib2==0.22.0
|
70 |
+
httpx==0.28.1
|
71 |
+
huggingface-hub==0.29.3
|
72 |
+
idna==3.10
|
73 |
+
IMAPClient==2.1.0
|
74 |
+
ipykernel==6.29.5
|
75 |
+
ipython==9.0.2
|
76 |
+
ipython_pygments_lexers==1.1.1
|
77 |
+
ipywidgets==8.1.5
|
78 |
+
isoduration==20.11.0
|
79 |
+
jedi==0.19.2
|
80 |
+
Jinja2==3.1.6
|
81 |
+
joblib==1.4.2
|
82 |
+
json5==0.10.0
|
83 |
+
jsonpointer==3.0.0
|
84 |
+
jsonschema==4.23.0
|
85 |
+
jsonschema-specifications==2024.10.1
|
86 |
+
jupyter==1.1.1
|
87 |
+
jupyter-console==6.6.3
|
88 |
+
jupyter-events==0.12.0
|
89 |
+
jupyter-lsp==2.2.5
|
90 |
+
jupyter_client==8.6.3
|
91 |
+
jupyter_core==5.7.2
|
92 |
+
jupyter_server==2.15.0
|
93 |
+
jupyter_server_terminals==0.5.3
|
94 |
+
jupyterlab==4.3.6
|
95 |
+
jupyterlab_pygments==0.3.0
|
96 |
+
jupyterlab_server==2.27.3
|
97 |
+
jupyterlab_widgets==3.0.13
|
98 |
+
keras==3.9.1
|
99 |
+
kiwisolver==1.4.8
|
100 |
+
libclang==18.1.1
|
101 |
+
lxml==5.3.2
|
102 |
+
Markdown==3.7
|
103 |
+
markdown-it-py==3.0.0
|
104 |
+
MarkupSafe==3.0.2
|
105 |
+
matplotlib==3.10.1
|
106 |
+
matplotlib-inline==0.1.7
|
107 |
+
mdurl==0.1.2
|
108 |
+
mistune==3.1.3
|
109 |
+
ml_dtypes==0.5.1
|
110 |
+
mpmath==1.3.0
|
111 |
+
msgpack==1.1.0
|
112 |
+
multidict==6.2.0
|
113 |
+
multiprocess==0.70.16
|
114 |
+
namex==0.0.8
|
115 |
+
nbclient==0.10.2
|
116 |
+
nbconvert==7.16.6
|
117 |
+
nbformat==5.10.4
|
118 |
+
nest-asyncio==1.6.0
|
119 |
+
networkx==3.4.2
|
120 |
+
nltk==3.9.1
|
121 |
+
notebook==7.3.3
|
122 |
+
notebook_shim==0.2.4
|
123 |
+
numpy==1.26.4
|
124 |
+
oauthlib==3.2.2
|
125 |
+
olefile==0.46
|
126 |
+
opt_einsum==3.4.0
|
127 |
+
optree==0.14.1
|
128 |
+
overrides==7.7.0
|
129 |
+
packaging==24.2
|
130 |
+
pandas==2.2.3
|
131 |
+
pandocfilters==1.5.1
|
132 |
+
parso==0.8.4
|
133 |
+
pdfminer.six==20181108
|
134 |
+
pillow==11.1.0
|
135 |
+
platformdirs==4.3.7
|
136 |
+
prometheus_client==0.21.1
|
137 |
+
prompt_toolkit==3.0.50
|
138 |
+
propcache==0.3.1
|
139 |
+
proto-plus==1.26.1
|
140 |
+
protobuf==5.29.4
|
141 |
+
psutil==7.0.0
|
142 |
+
pure_eval==0.2.3
|
143 |
+
pyarrow==19.0.1
|
144 |
+
pyasn1==0.6.1
|
145 |
+
pyasn1_modules==0.4.1
|
146 |
+
pycparser==2.22
|
147 |
+
pycryptodome==3.22.0
|
148 |
+
pydantic==2.11.1
|
149 |
+
pydantic_core==2.33.0
|
150 |
+
Pygments==2.19.1
|
151 |
+
PyJWT==2.10.1
|
152 |
+
pyparsing==3.2.3
|
153 |
+
PyPDF2==3.0.1
|
154 |
+
python-dateutil==2.9.0.post0
|
155 |
+
python-docx==1.1.2
|
156 |
+
python-dotenv==1.1.0
|
157 |
+
python-json-logger==3.3.0
|
158 |
+
python-multipart==0.0.20
|
159 |
+
python-pptx==0.6.18
|
160 |
+
pytz==2025.2
|
161 |
+
pywin32==310
|
162 |
+
pywinpty==2.0.15
|
163 |
+
PyYAML==6.0.2
|
164 |
+
pyzmq==26.3.0
|
165 |
+
referencing==0.36.2
|
166 |
+
regex==2024.11.6
|
167 |
+
requests==2.32.3
|
168 |
+
requests-oauthlib==2.0.0
|
169 |
+
rfc3339-validator==0.1.4
|
170 |
+
rfc3986-validator==0.1.1
|
171 |
+
rich==13.9.4
|
172 |
+
rpds-py==0.24.0
|
173 |
+
rsa==4.9
|
174 |
+
safetensors==0.5.3
|
175 |
+
scikit-learn==1.6.1
|
176 |
+
scipy==1.15.2
|
177 |
+
seaborn==0.13.2
|
178 |
+
Send2Trash==1.8.3
|
179 |
+
sentence-transformers==4.1.0
|
180 |
+
six==1.12.0
|
181 |
+
sniffio==1.3.1
|
182 |
+
sortedcontainers==2.4.0
|
183 |
+
soupsieve==2.6
|
184 |
+
SpeechRecognition==3.8.1
|
185 |
+
stack-data==0.6.3
|
186 |
+
starlette==0.46.1
|
187 |
+
sympy==1.13.1
|
188 |
+
tensorboard==2.19.0
|
189 |
+
tensorboard-data-server==0.7.2
|
190 |
+
tensorflow==2.19.0
|
191 |
+
tensorflow-estimator==2.15.0
|
192 |
+
tensorflow-intel==2.15.1
|
193 |
+
tensorflow-io-gcs-filesystem==0.31.0
|
194 |
+
termcolor==2.5.0
|
195 |
+
terminado==0.18.1
|
196 |
+
textblob==0.19.0
|
197 |
+
textract==1.6.3
|
198 |
+
tf_keras==2.19.0
|
199 |
+
threadpoolctl==3.6.0
|
200 |
+
tinycss2==1.4.0
|
201 |
+
tokenizers==0.21.1
|
202 |
+
torch==2.6.0
|
203 |
+
torchaudio==2.6.0
|
204 |
+
torchvision==0.21.0
|
205 |
+
tornado==6.4.2
|
206 |
+
tqdm==4.67.1
|
207 |
+
traitlets==5.14.3
|
208 |
+
transformers==4.50.2
|
209 |
+
types-python-dateutil==2.9.0.20241206
|
210 |
+
typing-inspection==0.4.0
|
211 |
+
typing_extensions==4.13.0
|
212 |
+
tzdata==2025.2
|
213 |
+
tzlocal==1.5.1
|
214 |
+
uri-template==1.3.0
|
215 |
+
uritemplate==4.1.1
|
216 |
+
urllib3==2.3.0
|
217 |
+
uvicorn==0.34.0
|
218 |
+
wcwidth==0.2.13
|
219 |
+
webcolors==24.11.1
|
220 |
+
webencodings==0.5.1
|
221 |
+
websocket-client==1.8.0
|
222 |
+
Werkzeug==3.1.3
|
223 |
+
widgetsnbextension==4.0.13
|
224 |
+
wrapt==1.14.1
|
225 |
+
xlrd==1.2.0
|
226 |
+
XlsxWriter==3.2.2
|
227 |
+
xxhash==3.5.0
|
228 |
+
yarl==1.18.3
|