|
import streamlit as st |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import random |
|
from scipy.stats import entropy as scipy_entropy |
|
from io import BytesIO |
|
|
|
|
|
seqlen = 60 |
|
steps = 120 |
|
min_run, max_run = 1, 2 |
|
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0} |
|
bases = ['A', 'C', 'G', 'T'] |
|
|
|
|
|
def find_local_min_runs(profile, min_run=1, max_run=2): |
|
result = [] |
|
N = len(profile) |
|
i = 0 |
|
while i < N: |
|
run_val = profile[i] |
|
run_length = 1 |
|
while i + run_length < N and profile[i + run_length] == run_val: |
|
run_length += 1 |
|
if min_run <= run_length <= max_run: |
|
result.append((i, i + run_length - 1, run_val)) |
|
i += run_length |
|
return result |
|
|
|
def bio_mutate(seq): |
|
r = random.random() |
|
if r < 0.70: |
|
idx = random.randint(0, len(seq)-1) |
|
orig = seq[idx] |
|
prob = random.random() |
|
if orig in 'AG': |
|
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C']) |
|
elif orig in 'CT': |
|
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G']) |
|
else: |
|
newbase = random.choice([b for b in bases if b != orig]) |
|
seq = seq[:idx] + newbase + seq[idx+1:] |
|
|
|
elif r < 0.80: |
|
idx = random.randint(0, len(seq)-1) |
|
ins = ''.join(random.choices(bases, k=random.randint(1, 3))) |
|
seq = seq[:idx] + ins + seq[idx:] |
|
seq = seq[:seqlen] |
|
|
|
elif r < 0.90: |
|
if len(seq) > 4: |
|
idx = random.randint(0, len(seq)-2) |
|
dell = random.randint(1, min(3, len(seq)-idx)) |
|
seq = seq[:idx] + seq[idx+dell:] |
|
|
|
else: |
|
if len(seq) > 10: |
|
start = random.randint(0, len(seq)-6) |
|
end = start + random.randint(3,6) |
|
subseq = seq[start:end][::-1] |
|
seq = seq[:start] + subseq + seq[end:] |
|
|
|
while len(seq) < seqlen: |
|
seq += random.choice(bases) |
|
if len(seq) > seqlen: |
|
seq = seq[:seqlen] |
|
return seq |
|
|
|
def compute_autocorr(profile): |
|
profile = profile - np.mean(profile) |
|
result = np.correlate(profile, profile, mode='full') |
|
result = result[result.size // 2:] |
|
norm = np.max(result) if np.max(result)!=0 else 1 |
|
return result[:10]/norm |
|
|
|
def compute_entropy(profile): |
|
vals, counts = np.unique(profile, return_counts=True) |
|
p = counts / counts.sum() |
|
return scipy_entropy(p, base=2) |
|
|
|
def plot_step(seq, step, cnt_hist, ent_hist, ac_hist): |
|
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq]) |
|
runs = find_local_min_runs(torsion_profile, min_run, max_run) |
|
fig, axs = plt.subplots(3, 1, figsize=(10, 8)) |
|
plt.subplots_adjust(hspace=0.45) |
|
|
|
axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол") |
|
for start, end, val in runs: |
|
axs[0].axvspan(start, end, color="red", alpha=0.3) |
|
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5) |
|
axs[0].set_ylim(-200, 200) |
|
axs[0].set_xlabel("Позиция") |
|
axs[0].set_ylabel("Торсионный угол (град.)") |
|
axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent_hist[-1]:.2f}") |
|
axs[0].legend() |
|
|
|
axs[1].plot(cnt_hist, '-o', color='crimson', markersize=4) |
|
axs[1].set_xlabel("Шаг") |
|
axs[1].set_ylabel("Число машин") |
|
axs[1].set_ylim(0, max(10, max(cnt_hist)+1)) |
|
axs[1].set_title("Динамика: число 'биомашин'") |
|
|
|
axs[2].bar(np.arange(6), ac_hist[-1][:6], color='teal', alpha=0.7) |
|
axs[2].set_xlabel("Лаг") |
|
axs[2].set_ylabel("Автокорреляция") |
|
axs[2].set_title("Автокорреляция углового профиля и энтропия") |
|
axs[2].text(0.70,0.70, f"Энтропия: {ent_hist[-1]:.2f}", transform=axs[2].transAxes) |
|
|
|
return fig |
|
|
|
|
|
st.set_page_config(layout="wide") |
|
st.title("\U0001F9EA Торсионное пространство биомашин") |
|
|
|
if 'seq' not in st.session_state: |
|
st.session_state.seq = ''.join(random.choices(bases, k=seqlen)) |
|
st.session_state.cnt_hist = [] |
|
st.session_state.ent_hist = [] |
|
st.session_state.ac_hist = [] |
|
st.session_state.step = 0 |
|
|
|
if st.button("Следующий шаг мутации"): |
|
st.session_state.seq = bio_mutate(st.session_state.seq) |
|
profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq]) |
|
runs = find_local_min_runs(profile, min_run, max_run) |
|
st.session_state.cnt_hist.append(len(runs)) |
|
st.session_state.ent_hist.append(compute_entropy(profile)) |
|
st.session_state.ac_hist.append(compute_autocorr(profile)) |
|
st.session_state.step += 1 |
|
|
|
if st.session_state.step > 0: |
|
fig = plot_step( |
|
st.session_state.seq, |
|
st.session_state.step, |
|
st.session_state.cnt_hist, |
|
st.session_state.ent_hist, |
|
st.session_state.ac_hist |
|
) |
|
st.pyplot(fig) |
|
else: |
|
st.info("Нажмите кнопку, чтобы начать мутацию цепи и наблюдение за торсионными биомашинами.") |
|
|