File size: 5,166 Bytes
161a31c
3ffebe8
599d710
161a31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cab60db
6c5a763
 
 
161a31c
 
 
6c5a763
 
161a31c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411f3df
 
161a31c
 
411f3df
 
161a31c
 
 
411f3df
 
161a31c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
from scipy.stats import entropy as scipy_entropy
from io import BytesIO

# --- НАСТРОЙКИ ---
seqlen = 60
steps = 120
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']

# --- ФУНКЦИИ ---
def find_local_min_runs(profile, min_run=1, max_run=2):
    result = []
    N = len(profile)
    i = 0
    while i < N:
        run_val = profile[i]
        run_length = 1
        while i + run_length < N and profile[i + run_length] == run_val:
            run_length += 1
        if min_run <= run_length <= max_run:
            result.append((i, i + run_length - 1, run_val))
        i += run_length
    return result

def bio_mutate(seq):
    r = random.random()
    if r < 0.70:
        idx = random.randint(0, len(seq)-1)
        orig = seq[idx]
        prob = random.random()
        if orig in 'AG':
            newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
        elif orig in 'CT':
            newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
        else:
            newbase = random.choice([b for b in bases if b != orig])
        seq = seq[:idx] + newbase + seq[idx+1:]

    elif r < 0.80:
        idx = random.randint(0, len(seq)-1)
        ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
        seq = seq[:idx] + ins + seq[idx:]
        seq = seq[:seqlen]

    elif r < 0.90:
        if len(seq) > 4:
            idx = random.randint(0, len(seq)-2)
            dell = random.randint(1, min(3, len(seq)-idx))
            seq = seq[:idx] + seq[idx+dell:]

    else:
        if len(seq) > 10:
            start = random.randint(0, len(seq)-6)
            end = start + random.randint(3,6)
            subseq = seq[start:end][::-1]
            seq = seq[:start] + subseq + seq[end:]

    while len(seq) < seqlen:
        seq += random.choice(bases)
    if len(seq) > seqlen:
        seq = seq[:seqlen]
    return seq

def compute_autocorr(profile):
    profile = profile - np.mean(profile)
    result = np.correlate(profile, profile, mode='full')
    result = result[result.size // 2:]
    norm = np.max(result) if np.max(result)!=0 else 1
    return result[:10]/norm

def compute_entropy(profile):
    vals, counts = np.unique(profile, return_counts=True)
    p = counts / counts.sum()
    return scipy_entropy(p, base=2)

def plot_step(seq, step, cnt_hist, ent_hist, ac_hist):
    torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
    runs = find_local_min_runs(torsion_profile, min_run, max_run)
    fig, axs = plt.subplots(3, 1, figsize=(10, 8))
    plt.subplots_adjust(hspace=0.45)

    axs[0].plot(torsion_profile, color='royalblue', label="Торсионный угол")
    for start, end, val in runs:
        axs[0].axvspan(start, end, color="red", alpha=0.3)
        axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=5)
    axs[0].set_ylim(-200, 200)
    axs[0].set_xlabel("Позиция")
    axs[0].set_ylabel("Торсионный угол (град.)")
    axs[0].set_title(f"Шаг {step}: {seq}\nЧисло машин: {len(runs)}, энтропия: {ent_hist[-1]:.2f}")
    axs[0].legend()

    axs[1].plot(cnt_hist, '-o', color='crimson', markersize=4)
    axs[1].set_xlabel("Шаг")
    axs[1].set_ylabel("Число машин")
    axs[1].set_ylim(0, max(10, max(cnt_hist)+1))
    axs[1].set_title("Динамика: число 'биомашин'")

    axs[2].bar(np.arange(6), ac_hist[-1][:6], color='teal', alpha=0.7)
    axs[2].set_xlabel("Лаг")
    axs[2].set_ylabel("Автокорреляция")
    axs[2].set_title("Автокорреляция углового профиля и энтропия")
    axs[2].text(0.70,0.70, f"Энтропия: {ent_hist[-1]:.2f}", transform=axs[2].transAxes)

    return fig

# --- STREAMLIT ---
st.set_page_config(layout="wide")
st.title("\U0001F9EA Торсионное пространство биомашин")

if 'seq' not in st.session_state:
    st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
    st.session_state.cnt_hist = []
    st.session_state.ent_hist = []
    st.session_state.ac_hist = []
    st.session_state.step = 0

if st.button("Следующий шаг мутации"):
    st.session_state.seq = bio_mutate(st.session_state.seq)
    profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq])
    runs = find_local_min_runs(profile, min_run, max_run)
    st.session_state.cnt_hist.append(len(runs))
    st.session_state.ent_hist.append(compute_entropy(profile))
    st.session_state.ac_hist.append(compute_autocorr(profile))
    st.session_state.step += 1

if st.session_state.step > 0:
    fig = plot_step(
        st.session_state.seq,
        st.session_state.step,
        st.session_state.cnt_hist,
        st.session_state.ent_hist,
        st.session_state.ac_hist
    )
    st.pyplot(fig)
else:
    st.info("Нажмите кнопку, чтобы начать мутацию цепи и наблюдение за торсионными биомашинами.")